Release Note

Release Date : June. 2024.

Product Ver. : midas Gen 2024 (v2.1) + Design+ 2024(v2.1)

DESIGN OF General Structures

Integrated Design System for Building and General Structures

INDEX

midas Gen

- Added TWN-USD 112 (Taiwan) 新增112 年國家 RC 設計規範 TWN-USD 112
 - Improved Steel Design, Irregularity Check and other features according to IS Code (India) 改善印度規範之鋼構設計、不規則檢討等多項功能
 - Added 100:30:30 Rule according to Eurocode 8 新增歐洲規範 100:30:30 載重組合規則
 - Added Detail Report for Cyclic Shear Resistance Check 新增循環剪切作用力檢核詳細報表
 - Improved Construction Stage Analysis Control Data (Setting of Load Case) 改善施工階段分析的載重設定功能
 - Added Cold Formed Material of TIS 1228-2018 (Thailand) 新增泰國冷軋鋼材資料庫
 - Added Cold Formed Section of TIS 1228-2018 (Thailand) 新增泰國冷軋型鋼斷面資料庫
 - Added Static Seismic Load and Response Spectrum Function according to EC-8(2004) Malaysia N.A. 新增歐規馬來西亞特區靜態設計地震力與反應譜函數
 - ETC 其他新增改善項目
 - 1. Improved Rebar Size Dialog box in Meshed Design 改善鋼筋號數對話方塊
 - 2. Improved Shear Span in RC members under Eurocode 8 (Pushover Hinge) 改善歐規 RC 桿件剪力非線性鉸對應位置
 - 3. Improved Wall Design Force as per EC8 改善歐規牆設計力

Design+

- Added Member Design Module for IS :456-2000. (Column, Basement Wall, Shear Wall Module) 新增印度規範設計模組 (柱、地下外牆、剪力牆)
- Improved Link Option 改善Link項目
- Added Eurocode 2 in Batch Design 新增歐規批次設計
- Improved Batch Wall Design 改善批次牆設計
- Improved Anchor Bolt Design in Base Plate 改善基座鈑的螺栓設計
- Improved Start Page 改善起始頁顯示

Add TWN-USD 112 (Taiwan) 新增112年國家RC設計規範 TWN-USD 112

TWN-USD 112 RC Design – Check Beam Deflection 梁的撓度檢討功能

- 撓度的計算考慮了開裂斷面以及長期撓度行為 ٠
- 提供考慮長期撓度係數的分析結果與允許位移的比值 •

C	he	ck	Be	am	D	efl	ectio	on			Concre	te Desi	gn Code						×								
_											Design	Code :	TW	N-USD11	12				~								
											CH Ar Tor	neck Bea oply Spec Torsion I sion Red	m Deflectio cial Provisio Design uction Fac	ons for Se tor for Be	eismic Des	ign	1										
WN-US	D112	RC-Be	am Ch	necking R	esult	Dialog																				- 6]
Code : TV Sorted b	vn-usi y O	D112 Membe Propert	r ty	Ur Results	nit: t ●∑ ○R	onf , trength ebar De	cm tail	Primary S	orting Optio	on MB														D	efle	ectio	n
MEMB		Sec	tion	fc				Negati	ve Momer	nt Strer	ngth			Posit	ive Momer	t Strer	ngth			Shear S	trengt	h			Defle	ction	
SECT	SEL	BC	HC	fy fve	POS	СНК	Rebar	As.use	N(-) Mu	LCB	N(-) øMn	Rat-N	Rebar	As.use	P(+) Mu	LCB	P(+) øMn	Rat-P	Stirrup	Vu	LCB	φVc	Rat-V	Short-	Fime Rat-D	Long-T	ime Rat-D
494		G	1	0.35000	1	ОК	7-2-D25	45.630	10374.9	20	10865.5	0.95	5-D25	25.350	5527.92	36	6394.51	0.86	2-D13 @90	57.6249	74	0.00000	0.95	Dei	NateD	Udi	Nat-D
901		50.00	75.00	4.20000	М	ОК	4-D25	20.280	4424.28	20	5067.31	0.87	4-D25	20.280	4514.33	20	5067.31	0.89	2-D13 @150	54.2124	74	18.5211	0.98	0.0172	0.01	0.1508	0.10
720.00		0.000	0.000	4.20000	J	OK	6-D25	30.420	6968.05	36	7485.08	0.93	7-D25	35.490	7468.84	20	8687.43	0.86	2-D13 @110	47.4834	74	0.00000	0.95		1 1		

24.2.3.5 對於非預力構材,若無較詳盡之分析,有效慣性矩L。須使用下式及依表24.2.3.5計算

$$M_{cr} = \frac{f_r I_g}{y_t} \tag{24.2.3.5}$$

表 24.2.3.5 有效慣性矩 Ie

24.2.4 依時撓度計算

24.2.4.1 非預力構材

24.2.4.1.1 除非根據更詳細的分析,由潛變及收縮所引起之額外依時撓度,應由持續載重 計得的即時撓度乘以下列因數λ。得之。

the first official states of the first official states and
(242411)
(21.2.1.1.1)

24.2.4.1.2 式(24.2.4.1.1)中之 p'值,於簡支或連續時應取跨度中央之值,懸臂時應取支承 處之值。

24.2.4.1.3 式(24.2.4.1.1)中持續載重之依時因數号,須依據表 24.2.4.1.3 所列之值。

表 24.2.4.1.3 持續載重之依時因數

THE PUT ICH AND
1.0
1.2
1.4
2.0

詳細計算書結果

9. Check De	flection (Secto	or I, 0.25L)	
Deflection	δ _{Short-term} / δ _{allow} δ _{Long-term} / δ _{allow}	0.0172cm / 2.000cm = 0.009 0.151cm / 1.500cm = 0.101	OK OK
1) Criteria for d	eflection	· · · · · · · · · · · · · · · · · · ·	
For short- For long-te	term deflection erm deflection	: Span/360.000 : Span/480.000	
2) Time-depend Time-depend $\rho' = 0.007$ $\lambda = \frac{\xi}{1+50\beta}$	dent factor endent factor for susta 47 = 1.456	sined load (ξ) = 2.000	
3) Calculate cra $I_{g} = \frac{b h^{3}}{12}$ $n = E_{s} / E_{c}$ $f_{r} = 2 \sqrt{f}$ $M_{cr} = \frac{f_{r} I_{g}}{y_{t}}$	ck moment of section = 1,757,812.500cm ⁴ <u>=</u> 9.087 c = 0.0374tonf/cm ² = 1,753.902tonf.cm		
4) Calculate por M _D = 726.5 M _L = 146.5 M _{D+L} = 875 M _{SUS} = M _E	sitive moment 523tonf-cm 39tonf-cm 8.061tonf-cm 9 + 0.50ML = 799.792to	onficm	
5) Calculate ine $I_{cr} = \frac{b(k)}{3}$ $I_{e.D} = I_g = 1$ $I_{e.D+L} = I_g = 1$ $I_{e.SUS.} = I_g = 1$	ertia of moment for po d) ³ + nA ₅ (d-kd) ² + ,757,812.500cm ⁴ (M ₅ 1,757,812.500cm ⁴ (M 1,757,812.500cm ⁴ (M)	sitive section $(n-1) A'_{s} (kd-d')^{2} = 746,707.466cm^{4}$ $s \leq (2/3) M_{tr} / M_{tr} = 0$	
6) Calculate ner M _D = -2,09 M _L = -437. M _{D+L} = -2,5 M _{SUS} = M _E	gative moment 19.790tonf-cm 408tonf-cm 537.198tonf-cm 1 + 0.50ML = -2,318.49	4tonf-cm	
7) Calculate ine	rtia of moment for ne	egative section	
$I_{cr} = \frac{b(k)}{3}$	$\frac{d^{3}}{2}$ + nA _s (d-kd) ² +	(n-1) A's (kd-d) ² = 1,105,947.074cm ⁴	
$I_{e,D} = \frac{1}{1-1}$ $I_{e,D+L} = \frac{1}{1-1}$	$\frac{I_{cr}}{(2/3) M_{cr} / M_D)^2 (1)}$	$\frac{1 - (l_{cr} / l_g)}{1 - (l_{cr} / l_g)} = 1,249,644.191 \text{ cm}^4$	
$I_{e.SUS.} = \frac{1}{1}$	- ((2/3) M _{cr} / M _{SUS} .)	$\frac{1}{2(1-(l_{cr}/l_g))} = 1,221,122.755 \text{ cm}^4$	
8) Calculate eff le.avg.D = 0.1 le.avg.D+L = 0 le.avg.SUS = 0 9) Calculate det K = 0.8000	ective inertia of mom 85I _D (+) + 0.15I _D (-) = 1, 0.85I _D +L(+) + 0.15I _D +L(-) 0.85I _{SUS} (+) + 0.15I _{SUS} (- flection (Fix-Pin support) K Mp. ²	ent 581,587.254cm ⁴ = 1,674,215.338cm ⁴ ₁ = 1,677,309.038cm ⁴	
$\delta_{i,D} = \frac{5}{48}$ $\delta_{i,D+L} = \frac{-4}{48}$	$\frac{K MD L^{-1}}{E_c l_{e.avgD}} = 0.0831 cr$ $\frac{5}{8} \frac{K M_{D+L} L^2}{E_c l_{e.avgD+L}} = 0.10$	n J0cm	

 $\delta_{i.SUS} = \frac{5}{48} \frac{K M_{SUS} L^2}{E_c l_{e.avg,SUS}} = 0.0918 \text{ cm}$

 $\delta_{i,L} = \delta_{i,D+L} - \delta_{i,D} = 0.0172 cm$

 $\delta_{Short-Term} = \delta_{i,L} = 0.0172 cm$

 $\delta_{\text{Long-Term}} = \delta_{i,L} + \lambda \, \delta_{i,SUS} = 0.151 \text{cm}$

TWN-USD 112 RC Design – Special RC Structural Wall 新增特殊結構牆設計

- 牆設計考慮橫向鋼筋面積需求與厚度限制等 ٠
- 包括考量邊界構材計算 ٠

Special Structural Wall

Concrete Design C	Code	
Design Code :	TWN-USD112	~
Check Beam De Apply Special Pr Seismic Design	flection rovisions for Seismic Design n Parameter ng column-weak beam on last	floor
Shear Wall Type	e Structural Wall	
Boundary Ele	ment Method	
ODisplacer	nent Based Method	
Deflectio	n Amplification Factor (Cd)	4.50 🗸
Importar Stress Ba	nt Factor (Ie) ased Method	1.20 ~

RC-Wall Design 結果

800.00 320.00 20.000 4200.00 0.982

800.00 320.00 20.000 4200.00

731708

36

9 12.095 D13 @210

TWN-USD112 RC-Wall Design Result Dialog

Wall Mark

wM0002

wM0004

HTw

Wall ID + Story

O Wall ID (WID)

Lw

Code : TWN-USD112 (Method 2)

Sorted by

WID

Story

6F

6F

2 **V**

4

urdi	vvall			1	8.7.3 1	设計力									
				_	J	小應按	因數化載	重組合之側	向力分	分析而	得。				
					18.7	.3.1 \$	÷VuEh係由	1線性分析所	取得	,設言	+剪力1	e應按	下式計算	:	
12			~			V	$V_e = V_{uns} +$	$-(\Omega_v \omega_v) V_{uEh}$						(1	8.7.3.1)
eismic Desi	gn					V 1	uEh和Vuns 8.7.3.2節	為導致最大 至第18.7.3.5	Ve之 節。	適用す	战重 組合	合所意	逢生 的剪	力 , 而 Ω _ν 與 ω _ν 則定	2義於第
k beam on	last floor				18.7	.3.2 Ω 合	ν與ων應 下 <i>M_{pr}/M_u≭</i>	按表18.7.3.2 2計算值。	2計算	之,Ω	,亦得採	挠曲1	臨界斷面	在包含地震效應(E)之	載重組
									表 18	8.7.3.2	Ω _v 與	ω			
thod						情	况			Ω	v_{ν}			ω_{ν}	
Factor (Cd) 4.50 V		$h_{wcs}/\ell_w \le 1.0$		1	1.0 (a)			a) 1.0							
1.20 ~				$1.0 < h_{wcs}/\ell_w < 2.0$			(a)與(c)之	(a)與(c)之間線性內插 ((b)	b)			
						hwes/lw	≥ 2.0	1	.5			(c)		$0.8 + 0.0288h_n^{\frac{1}{3}}$	
														$[0.8 + 0.0134h_n^{\overline{3}}]$	
sign	結果	Ę													
(esult Dial	log									-	. ,	×			
Unit :	kgf ,	cm	P	rimary Sort	ing Option										
	Sort Resu	lt		JWID (Story										
fc	fy	Ratio	Pu	Мс	Vu	As-V	V-Rebar	End-Rebar	RE	B.E	Rebar	\sim			
hw	fys	Rat-V	Fu	LCB	LCB	As-H	H-Rebar	Bar Layer	0.E.	B.	EL				
280.000	4200.00	0.317	731708	76771.0	403641	19.900	D16 @200	4-D16 @300	YES	25- 3-D	10 @200 0.56		Spe	cial Boun <mark>dar</mark>	'Y
280.000	4200.00	0.302		76771.0	403641	19,900	D16 @200	4-D16 @300		25- 3-D	10 @200				

YES

150.56

Double

詳細計算書結果

3. Shear Capacity (z-D	ir.) (Sector	1. 0.00R)			
LCB	cLCB7	.,			
Shear V _u / ØV _{n.max}	403,641	388kgf / 425,692.622kgf	= 0.948	OK	
* cl CB7 : 1 2D + 1 0(1 0Ex1+0 3Ex	403,641	388kgf / 411,223.155kgf	= 0.982	ОК	
1) Calculate design shear force	according to coo	cial provisions for solemic	dosign		
$V_{\nu} = 210570374k\sigma f$	according to spe	cial provisions for seismic	uesign		
V _{uns} = 0.000kgf					
V _{uEh} = 210,570.374kgf					
h _{wcs} = 3,930.000cm					
(hws / lw = 4.9125 ≥ 2.0)				18.7.3.2	
h _w = 4,570.000cm					
Ω _v = 1.5000					
$\omega_v = 0.8 + 0.0288 h_n^{1/3} = 1$	2.2779 2.641.200kaf			10724	
V _e = V _e = 403,641.388kgf	3,041.300KBI			10.1.3.1	
2) Design Parameter					
L _w = 800.000cm. h = 20.0	4. Detailing	rules for the local o	ductility of concrete	e members (Sect	or I, 0.00R)
f'c = min(f'c , 700.0kgf/cn	Boundary	BELuse BELren BE	сва :Luse = 150.557cm ≤ BELree =	150.557cm	ОК
$\lambda = 1.0$	Element	Suse, Sreg Sus	se = 20.000cm > Sreq = 6.667	cm	NG
ø = 0.75	* cLCB8 : 1.2D + 1	1.0(1.0Ex1-0.3Ez) + 1.0L			
Calculate shear strength by	1) Compute bou	undary element transverse	reinforcement length.		
$\alpha_c = 0.530$	c = 230.55 BEL = m	7cm av [c=0.11c/2.1=150.1	557cm		18764
$V_{cv} = \alpha_{c} \lambda_{cv} = 10,000.000001$	Dictired - Int	JX[C 0.10, C/2]=150.			10.7.0.4
	2) Determine if	2kgf/cm ² > 0.2 f ² = 56.000	s are required by stress basi kaf/cm²	ed method.	18763
 Check required shear reinfo V = 402 641 299km 	- Special b	oundary elements are requ	ired		10.1.0.0
Ø = 0.750	3) Check specia	I boundary elements are re	equired in current wall		
Ø V _c = Ø * V _c = 106,423.15	σ = 63.686	kgf/cm ² > 0.15 f' _c = 42.000	kgf/cm²		18.7.6.3
Vu = 403,641.388kgf > Ø \	- Special b	oundary element transvers	e reinforcement is required	1	
→ Transverse reinforcen	4) Check dimen	sion of the special bounda	ry element		
5) Check spacing of shear rein	b = 20.000	cm			
semme = min (1/5 3 h 4*	n _u = 320.00	JUCM			
	b > 16	→ O.K			
	If H _w / L _w >	2, c / L _w > 3/8			

5) Compute maximum spacing of horizontal rebar for boundary element. A_{h1} = 0.710cm² h_x = h_w - 2 * D_e + Dia_{end} + Dia_{hor} = 17.543cm smax1 = min [Dimensionmin /3 , 8 db , 20.000cm] = 6.667cm Table 18.7.6.5(b) s_{max2} = min[max[10.000cm, 10 + (35 - h_x)/3 , 15.000cm] = 15.819cm s_{max} = min [s_{max1,max2}] = 6.667cm suse = 20.000cm $s_{use} = 20.000 \text{ cm} > s_{max} = 6.667 \text{ cm} \rightarrow \text{Not Acceptable}$

6) Compute horizontal rebar for special boundary element for thickness direction. hc1 = BELreg - 2 * De + Diaend + Diahor = 146.194cm $\left(\frac{A_g}{A_{ch}}-1\right) f'_c / f_{\gamma t} = 10.180 \text{ cm}^2$ Ash1i = 0.3 S hc1 (

```
A_{sh1ii} = 0.09 \text{ S } h_{c1} f'_c / f_{yt} = 17.543 \text{ cm}^2
                                       . . . . . .
```

- 05 -

18.4.5.3 (e)

TWN-USD 112 RC Design – Shear for Seismic Design Setting 新增柱的剪力強度設定係數

• 梁和柱桿件可以分別採用不同的放大係數(a2)來計算考量地震效應的設計剪力

Shear for Seismic Design

Concrete Design Code	Х
Design Code : TWN-USD112	~
✓ Check Beam Deflection ✓ Apply Special Provisions for Seismic Design □ Seismic Design Parameter □ Consider strong column-weak beam on last floor Shear Wall Type ✓ Special RC Structural Wall Boundary Element Method ● Displacement Based Method Deflection Amplification Factor (Cd) Important Factor (Ie) ○ Stress Based Method]
Shear for Design	
$eq:rescaled_$	
Vu2 , Vg + a2*Veq (Column) , a2 = 2	
Design Strength Otesign Strength Don't consider the k1 factor Reduction factor of column : 0.65	

詳細計算書結果-Beam

1. Member Information

1) Design Code TWN-USD112

2) Section Property G1 (ID : 11)

3) Material

Concrete

f'c = 2,800,000.000kgf/m², Ec = 2.007984e+9kgf/m² Reinforcement f_y = 42,000,000.000kgf/m², f_{ys} = 28,000,000.000kgf/m², Ec = 2.040000e+10kgf/m²

4) Length L = 9.500m

5) Reinforcement Data

Stirrups

Special Provisions For Seismic Design : Special Moment Frames

- Seismic Scale Up Factor for Shear (α_1) = 1.000

- Seismic Scale Up Factor for Shear (α_2) = 1.000

Stirrups

a2 = 1 (for Beam)

2-D13@220

2-D13@120

6) Description of applied factors for design

· ΜΑΧ[Snear by α1 , Snear by α2]

Stirrups

2-D13@110

詳細計算書結果-Column

- WAX Shear by α_1 , shear by α_2]

TWN-USD 112 RC Design – Beam-Column Joint Design 梁柱接頭剪力檢核

- 柱桿件上、下兩端均可檢核接頭剪力
- 以1D梁/柱桿件中心-中心 (Center to Center) 計算有效面積 Aj

3. Shear Capacity

[END]	y (LCB : 9, POS : J)	z (LCB : 9, POS : J)
Applied Shear Force (Vu)	2505.71 kgf	38073.7 kgf
Design Shear Strength (φVc+φVs)	23992.2 + 63415.3 = 87407.5 kgf	24168.9 + 69342.0 = 93510.9 kgf
Shear Ratio	0.029 < 1.000 O.K	0.407 < 1.000 O.K
As-H.req	4-D13 @90	0.00113 m²/m, 4-D13 @90
[MIDDLE]	y (LCB: 9, POS: 1/2)	z (LCB : 9, POS : 1/2)
Applied Shear Force (Vu)	2505.71 kgf	38073.7 kgf
Design Shear Strength (φVc+φVs)	24161.2 + 43902.9 = 68064.1 kgf	24339.4 + 48006.0 = 72345.4 kgf
Shear Ratio	0.037 < 1.000 O.K	0.526 < 1.000 O.K
As-H.req	4-D13 @130	0.00112 m²/m, 4-D13 @130
[JOINT : Bottom]	y (LCB : 9, POS : I)	z (LCB : 9, POS : I)
Joint Shear (Vhj/φVnj)	103235 / 216335 = 0.477	191620 / 293994 = 0.652
Joint Ratio	0.477 < 1.000 O.K	0.652 < 1.000 O.K

Vhic = Ø Vn = 216,335.183kgf

Beam-	Column Joint C	apacity (y-Dir.) (Bottom, 0.00R)	
oint	LCB	CLCB9	OK
cLCB9 : 0.9	Vhjd / Vhjc 9D - 1.0EX	105,254.777Kgi / 210,555.165Kgi = 0.477	<u>UK</u>
Comput	a jaint gaomatry infor	mation	
.) Compute	400m	mation	举细针質建结里
D _b = 0.	.400m		叶柳叶异百和木
b = 0.	600m		
$h_c = 0$	600m		
$x_1 = x_2$	= min ((b _c - b _b)/2 . h	(4) = 0.125m	
b ₁ = m	in $(b_c, b_b + x_1 + x_2) =$	0.650m	
a) Comout	havizantal chaar for		
2) Compute	e norizontal snear fore	.e	
ZIVIbpr.	.cw = 61,485.226Kgt·m		
Zivibpr.	27 762 145kaf	1	
L = 3.9	900m		
Vcol.CW	= $(\Sigma M_{bpr,CW} + \Sigma V_{be} + I$	hi / 2) / lc = 18,670.223kgf	
Vcol.CCV	$W = (\sum M_{bpr,CCW} + \sum V_{be})$	h _i / 2) / l _c = 18,670.223kgf	
Applie	ed shear force: V _{col} = m	nax (V _{col.CW} V _{col.CCW}) = 18,670.223kgf	
Beam	demand top: A _{s1} * 1.2	25 f _{yt} = 60,952.500kgf	18.5.2.1
Beam	demand bottom: As2 '	1.25 f _{yt} = 60,952.500kgf	
Colum	n Location Type : Inte	rior Column	
V _{hjd} =	(A _{s1} + A _{s2}) * 1.25 T _{yt} -	V _{col} = 103,234.777kgt	18.5.4.1
3) Compute	e nominal joint shear (capacity	
f'c = 2,	.800,000.000kgf/m²		
A _j = 0.	390m²		
The jo	int is classified as,		15.2.6~8
C	Continuous column + C	Continuous beams + Not confined column.	
Vn = 3	3.9λ √ f' _c A _i = 254,5	11.980kgf	Table 18.5.4.3
l) Compute	e design joint shear ca	pacity	
$\phi = 0.2$	850		

表15.4.2.3 接頭剪力標稱強度Vn

柱	Vu設計方向之梁	依第15.2.8節規定 之橫向梁圍東	V_n , kgf [N] ^t
連續或符合第15.2.6節規定	連續或符合第15.2.7節規定	圍東	$5.3\lambda\sqrt{f_c'}A_j\left[1.7\lambda\sqrt{f_c'}A_j\right]$
		非圍束	$3.9\lambda\sqrt{f_c'}A_j\left[1.2\lambda\sqrt{f_c'}A_j\right]$
	其他	圍東	$3.9\lambda\sqrt{f_c'}A_j\left[1.2\lambda\sqrt{f_c'}A_j\right]$
		非圍束	$3.2\lambda\sqrt{f_c'}A_j \left[1.0\lambda\sqrt{f_c'}A_j\right]$
其他	連續或符合第15.2.7節規定	圍東	$3.9\lambda\sqrt{f_c'}A_j\left[1.2\lambda\sqrt{f_c'}A_j\right]$
		非圍束	$3.2\lambda\sqrt{f_c'}A_j \left[1.0\lambda\sqrt{f_c'}A_j\right]$
	其他	圍來	$3.2\lambda\sqrt{f_c'}A_j \left[1.0\lambda\sqrt{f_c'}A_j\right]$
		非圍來	$2.1\lambda\sqrt{f_c'}A_j \left[0.66\lambda\sqrt{f_c'}A_j\right]$

"若混凝土使用輕質粒料,λ應為0.75;若混凝土使用常重粒料,λ應為1.0。

TWN-USD 112 – Special Load Combinations for Seismic Design 新增應用於耐震設計的特殊載重組合

- 額外產生特殊耐震設計時考慮的載重組合 (Special Seismic Load) ٠
- 輸入地震力載重對應的 Over-Strength Factors (Ω_o)自動建立特殊耐震設計載重組 ٠
- 利用 Seismic Load Combinations Type 功能將特殊載重組應用到耐震桿件 ٠

ver-Strength Factor

0.2

 \sim

Add

Modify

Delete

Cancel

0.2

Х

Special Seisr	nic Load		
Option ● Add ○ Replace			
Code Selection Steel Cold Formed Steel Aluminum	SRC Footing		
Design Code : TWN-USD	112 ×		
Scale Up of Response Spectron Scale Up Factor : 1 Factor Load Case	um Load Cases RX ✓ Add		
	Modify Delete	Over-St	rength
ST : Static Load Case CS : Construction Stage Load C ST Only CS Only	ase O ST+CS	Factors for Seismic I	Design
Consider Orthogonal Effect		Vertical Load Factor	r: 0.2
Set Load Cases for Orth 100 : 30 Rule	ogonal Effect	System Over-Stre	ngth Factor
SRSS(Square-Root-of-Sum-	of-Squares) nations	Load Case : Over-Strength Fa	RX(RS)
✓ for Special Seismic Load for Vertical Seismic Forces Factors for Seismic	: Design	Load Case RX(RS) RY(RS)	Factor 2.1 2.3
Will Execute Construction Stag	e Analysis s Load Cases		
Transfer Stage : 1 Service Load Stage : 1	Define Factors	Vertical Seismic Force Vertical Force Facto	es or : 0.2
OK	Cancel		ОК

Loa	al Steel d Combini	Design Co ation List	oncrete Design	SRC Design	Cold Formed Steel Design Footing Design Aluminum D
	No	Name	Active	Туре	Description
┢	1	cLCB1	Strengt	Add	1.4(D)
	2	cLCB2	Strengt	Add	1.2(D) + 1.6(L)
	3	cLCB3	Strengt	Add	1.2(D) + 1.0EX + 1.0(L)
	4	cLCB4	Strengt	Add	1.2(D) + 1.0EY + 1.0(L)
	5	cLCB5	Strengt	Add	1.2(D) - 1.0EX + 1.0(L)
	6	cLCB6	Strengt	Add	1.2(D) - 1.0EY + 1.0(L)
	7	cLCB7	Strengt	Add	1.2(D) + 1.0(1.0)RX + 1.0(L)
	8	cLCB8	Strengt	Add	1.2(D) + 1.0(1.0)RY + 1.0(L)
	9	cLCB9	Strengt	Add	1.2(D) - 1.0(1.0)RX + 1.0(L)
	10	cLCB10	Strengt	Add	1.2(D) - 1.0(1.0)RY + 1.0(L)
	11	cLCB11	Strengt	Add	0.9D
	12	cLCB12	Strengt	Add	0.9(D) + 1.0EX
	13	cLCB13	Strengt	Add	0.9(D) + 1.0EY
	14	cLCB14	Strengt	Add	0.9(D) - 1.0EX
	15	cLCB15	Strengt	Add	0.9(D) - 1.0EY
	16	cLCB16	Strengt	Add	0.9(D) + 1.0(1.0)RX
	17	cLCB17	Strengt	Add	0.9(D) + 1.0(1.0)RY
	18	cLCB18	Strengt	Add	0.9(D) - 1.0(1.0)RX
	19	cLCB19	Strengt	Add	0.9(D) - 1.0(1.0)RY
	20	cLCB20	Service	Add	SERV :1.0D + 1.0L
	21	cLCB21	Special	Add	1.4(D)
	22	cLCB22	Special	Add	1.2(D) + 1.6(L)
	23	cLCB23	Special	Add	1.2(D) + 1.0(1.0)EX + 1.0(L) + (0.2)(0.0)D
	24	cLCB24	Special	Add	1.2(D) + 1.0(1.0)EY + 1.0(L) + (0.2)(0.0)D
	25	cLCB25	Special	Add	1.2(D) - 1.0(1.0)EX + 1.0(L) + (0.2)(0.0)D
	26	cLCB26	Special	Add	1.2(D) - 1.0(1.0)EY + 1.0(L) + (0.2)(0.0)D
	27	cLCB27	Special	Add	1.2(D) + 1.0(1.0)(2.1)RX + 1.0(L) + (0.2)(0.0)D
	28	cLCB28	Special	Add	1.2(D) + 1.0(1.0)(2.30)RY + 1.0(L) + (0.2)(0.0)
	29	cLCB29	Special	Add	1.2(D) - 1.0(1.0)(2.1)RX + 1.0(L) + (0.2)(0.0)D
	30	cLCB30	Special	Add	1.2(D) - 1.0(1.0)(2.30)RY + 1.0(L) + (0.2)(0.0)E
	31	cLCB31	Special	Add	0.9D
	32	cLCB32	Special	Add	0.9(D) + 1.0(1.0)EX - (0.2)(0.0)D
	- 33	cLCB33	Special	Add	0.9(D) + 1.0(1.0)EY - (0.2)(0.0)D
	34	cLCB34	Special	Add	0.9(D) - 1.0(1.0)EX - (0.2)(0.0)D
	35	cLCB35	Special	Add	0.9(D) - 1.0(1.0)EY - (0.2)(0.0)D
	36	cLCB36	Special	Add	0.9(D) + 1.0(1.0)(2.1)RX - (0.2)(0.0)D
	37	cLCB37	Special	Add	0.9(D) + 1.0(1.0)(2.30)RY - (0.2)(0.0)D
	38	cLCB38	Special	Add	0.9(D) - 1.0(1.0)(2.1)RX - (0.2)(0.0)D
	20	-L CB20	Orestal	اد اد ۸	

Seismic Load Combina	ation Type
General Steel Concrete SRC	Cold Formed Steel
Seismic Load Combination Type	~
Option Add/Replace Delete 	
Assign Member	
If or Special Seismic Loads	
○ for Vertical Seismic Forces	
Apply Close	

Special Load Combinations

Improved Steel Design, Irregularity Check & Other Features according to IS Code (India) 改善印度規範之鋼構設計、不規則檢討等多項功能

The items below have been updated. If you want to know more details, please click on [Here]

• Added Seismic Provisions for Steel Design as per IS : 18168 - 2023

- 1. Additional Seismic Load Combination as per IS : 18168 : 2023
- 2. Column to beam strength ratio as per IS : 18168 -2023
- 3. Seismic Beam Design for SMRF as per IS : 18168-2023
- 4. Seismic Beam Design & Brace Design for SCBF as per IS : 18168-2023

• Irregularity Check according to IS : 1893 -2016

- 1. Torsional Irregularity & Weight Irregularity
- 2. Stiffness Irregularity
- 3. Capacity Irregularity
- 4. Irregular modes of oscillation

• Irregularity Check according to IS : 16700 -2023

- 1. Stiffness Irregularity & Capacity Irregularity
- 2. Natural modes of vibration
- Approximate Time period of building according to IS : 16700-2023
- Lateral Story Drift Check according to IS : 16700 2023
- Stability Coefficient Check according to IS : 16700 2023

100:30:30 Rule according to Eurocode 8 新增歐洲規範 100:30:30 載重組合規則

v ...

V

V

LC3

None

 \sim ...

 \sim

 \sim

LC3

n_/nc)

EZ(ST)

100:30 Rule

Auto Grouping Generation...

LC2

Ry(RS)

100:30:30 Rule

LC1

Rx(RS)

Rx(RS)

Ry(RS)

Rz(RS)

LC1

Dw(DC)

EX(ST)

2

Auto Grouping Generation...

LC2

Dw/DC)

EY(ST)

1

100:30 rule is applied when not selecting 'Load case 3' ▶ •

100:30:30 rule is applied when selecting all load cases

International Interna International International	I	No	Name	Active	Type	DL(ST)	LL(ST)	WX(ST)	WY(ST	EX(ST)	EY(ST)	EZ(ST)
2 clcbB10 Nutl Nutl Nutl Nutl Nutl Nutl 2 cLCB11 Stren Add 1.0000 0.3000 1.0000 0.3000 0.3000 3 cLCB12 Stren Add 1.0000 0.3000 1.0000 0.3000 0.3000 4 cLCB13 Stren Add 1.0000 0.3000 1.0000 0.3000 0.3000 6 cLCB15 Stren Add 1.0000 0.3000 0.3000 1.0000 0.3000 7 cLCB16 Stren Add 1.0000 0.3000 0.3000 1.0000 0.3000 8 cLCB17 Stren Add 1.0000 0.3000 0.3000 1.0000 0.3000 1.0000 0.3000 1.0000 0.3000 1.0000 0.3000 1.0000 0.3000 1.0000 0.3000 1.0000 0.3000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	ł	• 1	cl CB10	Stren	Add	1 0000	0 3000			1 0000	0 3000	0.3000
1 1		2	CLCB11	Stren	Add	1.0000	0.3000			1.0000	0.3000	-0.300
Add 1.0000 0.3000 1.0000 0.3000 4 cLCB13 Stren Add 1.0000 0.3000 1.0000 0.3000 5 cLCB13 Stren Add 1.0000 0.3000 0.3000 0.3000 6 cLCB15 Stren Add 1.0000 0.3000 0.3000 1.0000 0.3000 7 cLCB16 Stren Add 1.0000 0.3000 0.3000 1.0000 0.3000 9 cLCB17 Stren Add 1.0000 0.3000 0.3000 1.0000 0.3000 9 cLCB19 Stren Add 1.0000 0.3000 0.3000 1.0000 10 cLCB20 Stren Add 1.0000 0.3000 -0.3000 1.0000 11 cLCB20 Stren Add 1.0000 0.3000 -0.3000 0.3000 12 cLCB21 Stren Add 1.0000 0.3000 -1.0000 0.3000			cLCB12	Stren	Add	1 0000	0.3000			1.0000	-0.300	0.3000
Science Add 1.0000 0.3000 <td></td> <td>4</td> <td>cl CB13</td> <td>Stren</td> <td>bbb</td> <td>1 0000</td> <td>0.3000</td> <td></td> <td></td> <td>1.0000</td> <td>-0.300</td> <td>-0.300</td>		4	cl CB13	Stren	bbb	1 0000	0.3000			1.0000	-0.300	-0.300
6 CLCB15 Stren Add 1.0000 0.3000 -0.3000 1.0000 0.3000 7 CLCB15 Stren Add 1.0000 0.3000 0.3000 1.0000 0.3000 8 CLCB17 Stren Add 1.0000 0.3000 -0.3000 1.0000 -0.300 9 CLCB18 Stren Add 1.0000 0.3000 0.3000 -0.3000 1.0000 -0.300 10 cLCB19 Stren Add 1.0000 0.3000 0.3000 -0.3000 1.0000 11 cLCB20 Stren Add 1.0000 0.3000 -0.3000 -0.300 1.0000 12 ctCB21 Stren Add 1.0000 0.3000 -0.3000 -0.300 -0.300 1.0000 13 cLCB22 Stren Add 1.0000 0.3000 -1.0000 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300<		5	cl CB14	Stren	bbA	1 0000	0.3000			0.3000	1 0000	0.3000
7 CLCB16 Stren Add 1.0000 0.3000 0.3000 1.0000 -0.300 9 CLCB17 Stren Add 1.0000 0.3000 -0.3000 1.0000 -0.300 9 CLCB18 Stren Add 1.0000 0.3000 -0.3000 1.0000 -0.300 10 CLCB19 Stren Add 1.0000 0.3000 0.3000 0.3000 1.0000 11 cLCB20 Stren Add 1.0000 0.3000 -0.3000 1.0000 12 ctCB21 Stren Add 1.0000 0.3000 -0.3000 -0.300 1.0000 13 ctCB22 Stren Add 1.0000 0.3000 -1.0000 -0.300 -0.300 -0.300 14 ctCB23 Stren Add 1.0000 0.3000 -1.0000 0.3000 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300<		6	cl CB15	Stren	Add	1 0000	0.3000			-0.3000	1 0000	0.3000
6 cLCB17 Stren Add 1.0000 0.3000 -0.3000 1.0000 -0.3000 9 cLCB18 Stren Add 1.0000 0.3000 0.3000 0.3000 1.0000 -0.3000 10 cLCB19 Stren Add 1.0000 0.3000 0.3000 0.3000 1.0000 11 cLCB20 Stren Add 1.0000 0.3000 -0.3000 1.0000 12 cLCB21 Stren Add 1.0000 0.3000 -0.3000 -0.300 1.0000 13 cLCB22 Stren Add 1.0000 0.3000 -1.0000 -0.300 -0.300 14 cLCB23 Stren Add 1.0000 0.3000 -1.0000 -0.300 -0.300 15 cLCB24 Stren Add 1.0000 0.3000 -1.0000 0.3000 -0.300 -0.300 -0.300 16 cLCB25 Stren Add 1.0000 0.3000 -0.3000		7	cl CB16	Stren	Add	1 0000	0.3000			0.3000	1 0000	-0.300
9 cLCB18 Stren Add 1.0000 0.3000 0.3000 1.0000 10 cLCB19 Stren Add 1.0000 0.3000 0.3000 1.0000 11 cLCB20 Stren Add 1.0000 0.3000 -0.3000 0.3000 1.0000 12 cLCB21 Stren Add 1.0000 0.3000 -0.3000 0.3000 1.0000 13 cLCB22 Stren Add 1.0000 0.3000 -0.3000 -0.300 -0.300 14 cLCB23 Stren Add 1.0000 0.3000 -1.0000 -0.300 -0.300 15 cLCB24 Stren Add 1.0000 0.3000 -1.0000 0.3000 -0.300		8	cl CB17	Stren	Add	1 0000	0.3000			-0.3000	1 0000	-0.300
10 cLCB19 Stren Add 1.000 0.3000 0.3000 0.3000 1.0000 11 cLCB20 Stren Add 1.0000 0.3000 -0.3000 0.3000 1.0000 12 cLCB21 Stren Add 1.0000 0.3000 -0.3000 0.3000 1.0000 13 cLCB22 Stren Add 1.0000 0.3000 -0.3000 -0.300 -0.300 -0.300 14 cLCB23 Stren Add 1.0000 0.3000 -1.0000 -0.300 -0.300 -0.300 15 cLCB24 Stren Add 1.0000 0.3000 -1.0000 0.3000 -0.300 -0.300 16 cLCB25 Stren Add 1.0000 0.3000 -0.3000 -0.3000 -0.300 -0.3000 17 cLCB26 Stren Add 1.0000 0.3000 -0.3000 -0.3000 -0.3000 -0.3000 -0.3000 -0.3000 -0.3000 -0.3000		9	cLCB18	Stren	Add	1.0000	0.3000			0.3000	0.3000	1.0000
11 CLCB20 Stren Add 10000 0.3000 -0.3000 0.3000 1.0000 12 CLCB21 Stren Add 1.0000 0.3000 -0.3000 -0.3000 1.0000 13 CLCB22 Stren Add 1.0000 0.3000 -0.3000 -0.300 -0.300 14 cLCB23 Stren Add 1.0000 0.3000 -1.0000 -0.300 -0.300 15 cLCB24 Stren Add 1.0000 0.3000 -1.0000 0.3000 -0.300 16 cLCB25 Stren Add 1.0000 0.3000 -1.0000 0.3000 -0.300 17 cLCB26 Stren Add 1.0000 0.3000 -0.3000 -0.3000 -0.3000 18 cLCB27 Stren Add 1.0000 0.3000 -0.3000 -0.3000 -0.3000 -0.3000 -0.3000 -0.3000 -0.3000 -0.3000 -0.3000 -0.3000 -0.3000 -0.3000		10	cLCB19	Stren	Add	1.0000	0.3000			0.3000	-0.300	1.0000
12 cLCB21 Stren Add 1.0000 0.3000 ●0.3000 0.300 1.0000 13 cLCB22 Stren Add 1.0000 0.3000 -1.0000 -0.300 -0.300 14 cLCB23 Stren Add 1.0000 0.3000 -1.0000 -0.300 0.3000 15 cLCB24 Stren Add 1.0000 0.3000 -1.0000 0.3000 -0.300 16 cLCB25 Stren Add 1.0000 0.3000 -1.0000 0.3000 -0.3000 17 cLCB26 Stren Add 1.0000 0.3000 -0.3000 -0.3000 18 cLCB27 Stren Add 1.0000 0.3000 -0.3000 -0.3000 19 cLCB28 Stren Add 1.0000 0.3000 -0.3000 -0.3000 20 cLCB29 Stren Add 1.0000 0.3000 -0.3000 -0.3000 21 cLCB30 Stren		11	cLCB20	Stren	Add	1.0000	0.3000			-0.3000	0.3000	1.0000
13 cLCB22 Stren Add 1.000 0.300 -1.000 -0.300 -0.300 14 cLCB23 Stren Add 1.000 0.3000 -1.0000 -0.300 0.3000 15 cLCB24 Stren Add 1.0000 0.3000 -1.0000 0.3000 -0.300 16 cLCB25 Stren Add 1.0000 0.3000 -1.0000 0.3000 -0.300 17 cLCB26 Stren Add 1.0000 0.3000 -0.3000 -1.000 -0.300 -0.300 18 cLCB27 Stren Add 1.0000 0.3000 -0.3000 -1.000 -0.300 19 cLCB28 Stren Add 1.0000 0.3000 -0.3000 -1.000 0.3000 20 cLCB29 Stren Add 1.0000 0.3000 -0.3000 -1.000 0.3000 21 cLCB30 Stren Add 1.0000 0.3000 -0.3000 -1.000	-	12	cLCB21	Stren	Add	1.0000	0.3000			-0.3000	-0.300	1.0000
14 cLCB23 Stren Add 1.0000 0.3000 -1.0000 -0.300 0.3000 15 cLCB24 Stren Add 1.0000 0.3000 -1.0000 0.3000 -0.300 16 cLCB25 Stren Add 1.0000 0.3000 -1.0000 0.3000 0.3000 17 cLCB26 Stren Add 1.0000 0.3000 -0.3000 -0.3000 -0.3000 18 cLCB27 Stren Add 1.0000 0.3000 -0.3000 -0.3000 -0.3000 19 cLCB28 Stren Add 1.0000 0.3000 -0.3000 -0.3000 -0.3000 20 cLCB29 Stren Add 1.0000 0.3000 -0.3000 -1.000 0.3000 21 cLCB30 Stren Add 1.0000 0.3000 -0.3000 -1.000 22 cLCB31 Stren Add 1.0000 0.3000 -0.3000 -0.3000 -1.000	1	13	cLCB22	Stren	Add	1.0000	0.3000			-1.0000	-0.300	-0.300
15 cLCB24 Stren Add 1.0000 0.3000 -1.0000 0.3000 -0.3000 16 cLCB25 Stren Add 1.0000 0.3000 -1.0000 0.3000 0.3000 17 cLCB26 Stren Add 1.0000 0.3000 -0.3000 -0.3000 -0.3000 18 cLCB27 Stren Add 1.0000 0.3000 -0.3000 -0.3000 -0.3000 19 cLCB28 Stren Add 1.0000 0.3000 -0.3000 -0.3000 -0.3000 20 cLCB29 Stren Add 1.0000 0.3000 -0.3000 -0.3000 -0.3000 21 cLCB30 Stren Add 1.0000 0.3000 -0.3000 -0.3000 -1.000 22 cLCB31 Stren Add 1.0000 0.3000 -0.3000 -0.3000 -1.000 23 cLCB32 Stren Add 1.0000 0.3000 0.3000 -0.3000 -0.	1	14	cLCB23	Stren	Add	1.0000	0.3000			-1.0000	-0.300	0.3000
16 cLCB25 Stren Add 1.0000 0.3000 -1.0000 0.3000 0.3000 17 cLCB26 Stren Add 1.0000 0.3000 -0.3000 -0.3000 -0.3000 -0.3000 -0.3000 18 cLCB27 Stren Add 1.0000 0.3000 0.3000 -1.000 -0.3000 -0.3000 -1.000 -0.3000 -0.3000 -0.3000 -1.000 -0.3000 -0.3000 -1.000 -0.3000 -0.3000 -1.000 -0.3000 -0.3000 -0.3000 -1.000 -0.3000 -0.3000 -0.3000 <td>1</td> <td>15</td> <td>cLCB24</td> <td>Stren</td> <td>Add</td> <td>1.0000</td> <td>0.3000</td> <td></td> <td></td> <td>-1.0000</td> <td>0.3000</td> <td>-0.300</td>	1	15	cLCB24	Stren	Add	1.0000	0.3000			-1.0000	0.3000	-0.300
17 cLCB26 Stren Add 1.000 0.3000 -0.3000 -1.000 -0.300 18 cLCB27 Stren Add 1.000 0.3000 0.3000 -1.000 -0.300 19 cLCB28 Stren Add 1.000 0.3000 -0.3000 -1.000 0.3000 20 cLCB29 Stren Add 1.000 0.3000 -0.3000 -1.000 0.3000 21 cLCB30 Stren Add 1.000 0.3000 -0.3000 -0.3000 -1.000 0.3000 22 cLCB30 Stren Add 1.000 0.3000 -0.3000 -0.3000 -1.000 23 cLCB32 Stren Add 1.000 0.3000 -0.3000 -0.3000 -1.000 24 cLCB33 Stren Add 1.000 0.3000 0.3000 -0.3000 -1.000	- 1	16	cLCB25	Stren	Add	1.0000	0.3000			-1.0000	0.3000	0.3000
18 CLCB27 Stren Add 1.000 0.3000 0.3000 -1.000 -0.300 19 CLCB28 Stren Add 1.000 0.3000 -0.3000 -0.3000 -0.3000 0.3000 -0.3000 -0.3000 -1.000 0.3000 -0.3000 -0.3000 -1.000 0.3000 -1.000 0.3000 -0.3000 -0.3000 -1.000 0.3000 -1.000 0.3000 -1.000 0.3000 -1.000 0.3000 -1.000 0.3000 -1.000 0.3000 -1.000 0.3000 -1.000 0.3000 -1.000 0.3000 -1.000 0.3000 -1.000 0.3000 -1.000 0.3000 -1.000 0.3000 -1.000 0.3000 -1.000 0.3000 -1.0000 0.3000 -1.000	1	17	cLCB26	Stren	Add	1.0000	0.3000			-0.3000	-1.000	-0.300
19 cLCB28 Stren Add 1.000 0.3000 -0.3000 -1.000 0.3000 20 cLCB29 Stren Add 1.000 0.3000 0.3000 -1.000 0.3000 21 cLCB30 Stren Add 1.000 0.3000 -0.3000 -0.3000 -1.000 0.3000 22 cLCB31 Stren Add 1.000 0.3000 -0.3000 -0.3000 -1.000 23 cLCB32 Stren Add 1.000 0.3000 0.3000 -0.3000 -0.300 -1.000 24 cLCB33 Stren Add 1.000 0.3000 0.3000 -0.3000 -0.3000 -1.000	- 1	18	cLCB27	Stren	Add	1.0000	0.3000			0.3000	-1.000	-0.300
20 cLCB29 Stren Add 1.000 0.3000 0.3000 -1.000 0.3000 21 cLCB30 Stren Add 1.000 0.3000 -0.3000 -0.3000 -0.3000 -1.000 22 cLCB31 Stren Add 1.000 0.3000 -0.3000 -0.3000 -1.000 23 cLCB32 Stren Add 1.000 0.3000 0.3000 -0.3000 -1.000 24 cLCB33 Stren Add 1.0000 0.3000 0.3000 -0.3000 -1.000	1	19	cLCB28	Stren	Add	1.0000	0.3000			-0.3000	-1.000	0.3000
21 cLCB30 Stren Add 1.0000 0.3000 -0.3000 -0.3000 -1.000 22 cLCB31 Stren Add 1.0000 0.3000 -0.3000 -0.3000 -1.000 23 cLCB32 Stren Add 1.0000 0.3000 0.3000 -0.3000 -0.3000 -1.000 24 cLCB33 Stren Add 1.0000 0.3000 0.3000 -0.3000 -1.000	1	20	cLCB29	Stren	Add	1.0000	0.3000			0.3000	-1.000	0.3000
22 cLCB31 Stren Add 1.000 0.3000 -0.3000 0.3000 -1.000 23 cLCB32 Stren Add 1.000 0.3000 0.3000 -0.3000 -0.3000 -1.000 24 cLCB33 Stren Add 1.0000 0.3000 0.3000 -0.3000 -1.000	1	21	cLCB30	Stren	Add	1.0000	0.3000			-0.3000	-0.300	-1.000
23 cLCB32 Stren Add 1.000 0.3000 0.3000 -0.300 -1.000 24 cLCB33 Stren Add 1.0000 0.3000 0.3000 0.3000 -0.3000 -1.000	- [22	cLCB31	Stren	Add	1.0000	0.3000			-0.3000	0.3000	-1.000
24 cLCB33 Stren Add 1.0000 0.3000 0.3000 -1.000	- 1	23	cLCB32	Stren	Add	1.0000	0.3000			0.3000	-0.300	-1.000
	1	24	cLCB33	Stren	Add	1.0000	0.3000			0.3000	0.3000	-1.000

Detail Report for Cyclic Shear Resistance Check 新增循環剪切作用力檢核詳細報表

• Only activated for individual load cases

Report provided separately for wall and Frame

Concrete Design	Pushover Result	Cyclic Shear Resistance Check Report for Frame	Cyclic Shear Resistance Check Report for Wall
Set Cyclic Shear Resistance Parameters	Set Cyclic Shear Resistance Parameters X	MIDAS/Text Editor [Joint Design_CyclicFram.txt]	MIDAS/Text Editor [Joint Design_CyclicWall.txt]
Load Case/Combination	Pushover Load Case	[[[+]]] Element : (Primary), Load = cLCB?, CF = 1.000	[[[*]]] Wall ID : I, Story : Base:1F (Primary), Load = cLCB7, CF = 1.000
cLCB7 Cyclic Shear Resistance Table Type Show Selected Elements Show All Elements Confidence Factor Displacement Behavior Factor(qd) 1 Importance Factor (le) 1 Verint Calculation Report OK	Y Step for Demand Damage Limitation (DL) Significant Damage (SD) Near Collapse (NC) User Defined 20 Cyclic Shear Resistance Table Type Show Selected Elements Show All Elements Confidence Factor 1.0 Print Calculation Report OK Cancel	*. Pos: 1, Dir: Fy - Mz (). Analysis result. N = 1215.220 kN V = 124.024 kN M = 277.415 kN-m ys = 1.150 k = 2.100 e = 0.001791 L = 4200.000 mm D = 585.000 mm $\Theta y = k + e + L / D = 0.026399$ q = 1.000000 $\Theta = 0.000007$ $\mu pl = max[ABS (q+\Theta / \Theta y) - 1, 0.0] = 0.0000000$ × = 221.717 mm (). Material Information. yel = 1.150 yc = 1.500 yc = 1.500 ys = -1.150 fc = fck / (CF + yc) = 18.306 MPa fvw = fvwk / (CF + ys) = 238.771 MPa (). Section Information. h = 650.000 mm Lv = N / Y = 2236.782 mm Ac = 330250.000 mm ² ρ tot = 0.120311 (). Galculate VW. $\rho w = Asv / (b + s) = 0.078154$ z = -585.000 mm Vw = pw + b + z + f/w = 7095.785 kM (). Calculate VR. Paraml = (h-x) / 2Lv + min(N, 0.55*Ac*fc) = 116.341 kM Param2 = 1 -0.05 + min(5, Lv / h) = 0.449 Param4 = 1.0 - 0.16 + min(5, Lv / h) = 0.449 Param4 = 1.0 - 0.16 + min(5, Lv / h) = 0.449 Param4 = 1.0 - 0.16 + min(5, Lv / h) = 0.449 Param4 = 1.0 - 0.16 + min(5, Lv / h) = 0.449 Param4 = 1.0 - 0.16 + min(5, Lv / h) = 0.449	*. Pos: I. Dir: Fz - Mv (). Analysis result. N = 3000.861 kM V = 722.126 kM M = 3884.590 kN-m q = 1.00000 $\Theta = 0.002124$ µp1 = max[ABS [q+ $\Theta / \Theta y$) - 1, 0.0] = 0.000000 x = 801.902 mm (). Material Information. y e1 = 1.150 y c = 1.500 y s = 1.150 y c = 1.500 y s = 238.771 MPa (). Section Information. h = 4600.000 mm Lv = M / V = 5379.384 mm Ac = 1532220.000 mm ² p tot = 0.005659 (). Calculate VW. $\rho w = Asv / (b + s) = 405.714286$ z = 4094.280 mm Vw = $\rho w + b + z + tyw = 138818309.343 kN$ (). Calculate VR. Param1 = (h-x) / 2Lv + min(N, 0.55+Ac+fc) = 1059.371 kN Param2 = 1 - 0.05 + min(5, µp1) = 1.000 Param3 = 0.16 + max[0.5, 100+p tot] = 0.813 VR = 120713000.650 kN

Improvement for Load Case Setting in Construction Stage Analysis Control Data 改善施工階段分析的載重設定功能 MIDAS

• Separate analysis results can be obtained for the load case specified by the user. (Previously, only Live Load could be separated from Dead Load.)

Add Cold Formed Material of TIS 1228-2018 (Thailand) 新增泰國冷軋鋼材資料庫

MIDAS

General					
Material ID 1		Name	SSCS 330		
Elasticity Data					_
Type of Design Steel	~	Steel Standard D8 Product Concrete Steodard	TIS 1228-2018 SSC5330 SSC5400 SSC5490 SSC5490 SSC5540	(5)	V
Type of Material	Orthotropic	•	Code		×.
		DB	1		~
Modulus of Elasticity :	2.0300e +05	N/mm²			
Poisson's Ratio :	0.3				
Thermal Coefficient :	1.1700e-05	1/[C]			
Weight Density :	7,69Be-05	N/mm²			
Use Mass Density:	7.85e-09	N/mm>/g			
Modulus of Elasticity :	0.0000e+00	N/mm²			
Poisson's Ratio :	D				
Themal Coefficient :	0.0000e+00	1/[⊂]			
Weight Density :	D	N/mm²			
Use Mass Density:	D	N/mm³/g			
Plasticity Data					
Plastic Material Name	NONE	~			
Inelastic Material Propertie	s for Fiber Model	8 Non-dissipativ	e demen		
Concrete None		Steel No	one	~	
Confined Concrete for Col	umns	None		~	
The mal Transfer					
Specific Heat :	0	Btu/N·[C]			
Heat Conduction :	0	Btu/mm·hr·[C]]		
	0.02				

• Cold-formed section design is supported for only AISI-CF08.

Code	d by	SD08 Member Property		Change	unit:kN , Update.	. m	Primar O SE	ry Sorting (CT C	Option MEMB							
CH	MEME	SECT	053	Sectio	n	LOD	Len	Ly	~	Ку	Cmy	1/Ap_y	Pu	Muy	Muz	Vuy
К	COM	SHR	SEL	Material	Fy	LCB	Lb	LZ	CD	Kz	Cmz	1/Ap_z	Pa	Мау	Maz	Vay
-	36	101	-	LC-150x85x	20x4.0		5.00000	5.00000	1.000	1.000	1.000	1.000	0.00000	-1.1307	0.00000	0.00000
OF	0.348	0.194	1.00	SSCS330	205000	1 1	5.00000	5.00000	1.000	1.000	1.000	1.000	240.875	3.24876	10.9675	49.5967

• When applied to a cross-section with a thickness exceeding 6mm, the strength value is applied as 0.

	DB	Es Modulus of Elasticity	v Possion's Ratio	α Thermal Coefficient	W Weight Density	Fu Tensile Strength	Fy Yield Strength	Limit for Thickness
	SSCS330			11.7 µm/m		330 Mpa	205 Mpa	
	SSCS400	000 000 14	0.3		7,850 kg/m ³	400 Mpa	245 Mpa	< Creater
	SSCS490	203,000 Mpa				490 Mpa	285 Mpa	≥ omm
plγ	SSCS540					540 Mpa	400 Mpa	

Add Cold Formed Section of TIS 1228-2018 (Thailand) 新增泰國冷軋型鋼斷面資料庫

	Channel					Z-Section			
ion Data	× Section Properties	×	Section Data			×	Section Propert	ties	
/User Value SRC Combined Tapered Composite			DB/User						
ection ID 1 Cold Formed Channel	~	Value Unit	Section ID 101	J Z-Section		~		Value	Unit
	Area	1 503718e-02 ft2	Name C 152x76x17.88		TIS 1228	20183	Area	5.567094e-03	ft ²
User 005 TIS 1228(2		6 361935e-03 #2		Close Vi	113 1220	2010) 1	Asv	2.144928e-03	ft ²
Sect Name	Δ	8 194491e-03 ft ²		Sect. Name	Z100x50x20/2.3	v	Asz	2.361817e-03	ft ²
LC-250x75x25x4.	5 AL	1.065243e-06 #	+-B- 1		2100x50x20/2.3		lxx	0.000000e+00	ft ⁴
LC-200x75x25x4	5 hw	5 665640e-04 ft	The second secon		2100×50×20/3.2		lw.	9.350045e-05	ft ⁴
LC-200x75x25x3.	177	1 149349e-04 ft*	e 📙 🛶 tw	Get Data from	Single Angle		IZZ	4.031990e-05	ft ⁴
LC-200375x20x4. LC-200x75x20x4.	Cvp	1 640420e-01 ft		DB Name	AISC10(US)		Cvp	1.602690e-01	ft
Number of Sedon LC-200x75x20x3.	Cym	8 202100e-02 ft		Sect. Name		~	Cvm	1.602690e-01	ft
Combine type LC-150x75x25x4.	Gzp	2 460630e-01 ft		e terra detare		the second se	Czp	1.640420e-01	ft
LC-150X75X25X3.	5 Czm	2 460630e-01 ft		н	0.328084 At		Czm	1.640420e-01	ft
H V LC-150x75x20x4.	Qvb	8 814152e-02 ft ²		в	0.154042 ft		Qvb	4.593811e-02	ft ²
LC-150x65x20x4.	Qzb	1.861063e-02 ft ²		tw	0.00754593 ft		Qzb	5.113656e-04	ft ²
LC-150x65x20x3.	Peri:O	2.015655e+00 ft	j.	r	0 ft		Peri:0	1.529528e+00	ft
LC-125x50x20x4.	Peril	0.000000e+00 ft		d	0.0556168 ft		Peri:l	0.000000e+00	ft
LC-125x50x20x3.	Centery	8.202100e-02 ft		th	90 [dec	1	Center:y	1.602690e-01	ft
LC-125x50x20x2. LC-120x60x25x4.	Center:z	2.460630e-01 ft					Center:z	1.640420e-01	ft
LC-120x60x20x3.	2 V1	4,202858e-02 ft					v1	7.824803e-02	ft
LC-120x40x20x3.	z1	2.460630e-01 ft					z1	1.640420e-01	ft
LC-100x50x20x4. LC-100x50x20x4.	y2	1.650601e-01 ft					y2	1.602690e-01	ft
LC-100x50x20x3.	2 z2	1.804462e-01 ft					z2	9.842520e-02	ft
LC-100x50x20x1.	y3	4.202858e-02 ft					y3	-7.824803e-02	ft
LC-75x45x15x2.3	z3 -	2.460630e-01 ft	Offset : Center-Center	Consid	er Shear Deformatio		z3	-1.640420e-01	ft
offset : Center-Center Gonsider Snear Deformation	y4 -	8.100291e-02 ft	Change Offset	Consid	er Warping Effect(7)	h DOF)	y4	-1.602690e-01	ft
Change Offset Consider Warping Effect(/th	<u>z4</u>	8.326673e-17 ft		<u> </u>			z4	-9.842520e-02	ft
		Close	Show Calculation Repute		K Caprel	Anoly			Close

Add Static Seismic Load and Response Spectrum Function according to EC-8(2004) Malaysia N.A.

MIDAS

新增歐規馬來西亞特區的靜態設計地震力與反應譜函數

Static Seismic Load

Response Spectrum Function

Malaysia values for nationally determined parameters described in MS EN 1998-1:2015

Parameter for Horizontal Response Spectrum

In the absence of deep soil effects, and for site specific information Malaysia spectra. Use the table below or refer to Annex C.

Peninsular:

Ground type	S	TB (S)	Tc (s)	<i>T</i> _D (S)
A	1	0.05	0.2	2.2
В	1.4	0.05	0.3	2.2
С	1.15	0.05	0.5	22
D	1.35	0.3	0.8	2.2
E	1.4	0.15	0.5	2.2

Or alternatively, for Malaysia spectra, site natural period (Ts) calculation is required for soil deposit exceeding 30 m in depth (deep geology). Use the table below or refer to Annexes A and D.

Peninsular:

Sabah:

Ground

type

A

B

C

D

F

Ground type	S	TB (S)	<i>T_c</i> (S)	<i>T_D</i> (S)
A	1	0.1	0.3	2.0
В	1.5	0.1	0.3	1.5
C	1.8	0.1	0.6	1.0
D	1.35	0.1	0.8	1.5
E	1.8	0.1	0.6	2.0

TB

(s)

01

0.1

0.1

0.1

0.1

Tc

(s)

0.3

0.3

0.6

0.8

0.6

TD

(s)

40

4.0 1.0

1.5

2.0

Sahah:

Sarawak:

Ground

type

A

В

C

D

F

Ground	0	Tn	To	To
type	3	(S)	(s)	(S)
A	1	0.1	0.4	2
В	1.4	0.15	0.4	2
С	1.35	0.15	0.6	2
D	1.35	0.2	0.8	2
E	1.4	0.15	0.5	2

TB

(S)

0.05

0.15

0.2

0.2

0.15

Tc

(S)

0.5

0.5

05

05

0.5

TD

(S)

1.2

12

1.2

1.2

1.2

Ground type	S	TB (S)	<i>Tc</i> (s)	TD (S)
A	1	0.1	0.3	1.25
В	1.5	0.1	0.3	1.25
С	1.8	0.1	0.6	1.0
D	1.35	0.1	0.8	1.5
E	1.8	0.1	0.6	2.0

Vertical Parameter for Vertical

Response Spectrum

S

1

12

1.3

1.35

1.4

a _{ve} ∕ag	TB	Tc	TD
	(S)	(S)	(S)
0.70	0.05	0.15	1.0

0	1.0	0.1	0.0	
D	1.35	0.1	0.8	1
E	1.8	0.1	0.6	2

Importance factor yl

S

1.5

1.8

1.35

1.8

Class I	: yr = 0.8
Class III	:)'ı = 1.2
Class IV	: yr = 1.5

midas Gen 2024 v2.1 Release Note

ETC 其他新增改善項目

	a the second management of the second s	
	Improved to use the same dialog box as the 1D member's rebar criter Rebar Size	ria feature Rebar Information
	KS JES CNS ASTM BS/BN UNE ES GB CSA SS	GOST AS/NZS PNS49 Rebar Code BS/EN
Setting of Rebar Size	D6 D6 D10 #3 P5 P4 P6 d4 L0M H5 Ø 100 0 10 0 13 #4 P6 P5 P8 d5 15M H6 Ø D13 D13 D14 P6 P5 P8 d5 15M H6 Ø D13 D13 D14 P7 P6 P10 d6 20M H7 Ø D16 D16 D19 #6 P8 P8 P12 d8 25M H8 D19 D19 D22 #7 P9 P10 P18 d12 33M H9 D22 D22 D25 #8 P10 P12 P18 d12 35M H10 D25 D25 D28 #9 P11 P14 P20 d14 45M H11	d6 D6 D10 CHK Name D1a Area D1a/U1 Weight (m) Weight (KNm) d10 D10 D16 P5 0.0050 0.0000 0.0050 0.0015 d10 D10 D16 P5 0.0050 0.0000 0.0050 0.0015 d12 D12 D2 P7 0.0070 0.0000 0.0022 Naterial Code d14 D16 D25 P7 0.0070 0.0001 0.0030 0.0039 0.0039 d16 D29 D28 P9 0.0090 0.0001 0.0090 0.0039 Class A Class A
in Meshed Design	0.029 0.029 0.032 #10 P12 P16 P22 0.16 55M H12 0.032 0.032 0.036 #11 P13 P18 P25 0.18 H13 0.035 0.035 0.039 #14 P16 P20 P28 0.020 H16 0.038 0.043 #18 P20 P22 0.022 H20	d.21 D.24 D.36 d.22 D.25 D.40 d.25 D.28 D.50 d.28 D.32 D.24 D.26 D.24 D.36 D.24 D.36 D.24 D.36 D.25 D.40 D.25 D.40 D.26 D.110 D.27 D.120 D.120 D.0001 D.130 0.0012 D.130 0.0160 D.155
	041 051 057 P32 P40 d23 H33 051 057 P30 d32 H40 057 P36 d40 d40	032 033 032 033 0.0200 0.0220 0.0242 d36 D40 P25 0.0260 0.0005 0.0250 0.0378 d40 P32 0.0320 0.0008 0.0320 0.0819 P40 0.0400 0.0013 0.0400 0.0967
		OK Close
	The shear span lengths can be entered for each end. Component Properties Component Hinge Location Pry 180 end Pry 180 end	Bion Skeleton Curve ✓ Eurocode 8 : 2004 ✓ Properties ✓ Eurocode 8 : 2004 ✓ Properties ✓ Eurocode 8 : 2004 ✓ Properties
Shear span in RC member under Eurocode 8 (Pushover Hinge)	Mx 18J-end My 18J-end My 18J-end Mz 18J-end Vield Surface Propertie	Eurocode 8 : 2004 Froperties Froperties My 0.1 0.1 Mz 0.1 0.1 Relative Length
塑鉸剪力位置		OK Cencel

MIDAS

ETC 其他新增改善項目

midas **Design+**

Design+ 2024 v2.1 Release Note

MIDAS

Improvement of Link Option 改善Link項目

UI Mode	midas Edit Mode
Link Option	
own Link In Link Memb.	(Down Link) Memb (Un Link)
Source and the state of the sta	Link Type by Member
RC	Apply Link Option by Member
Footing	
Beam & Girder	C Link by Section
Column	Uink by Member
Column (General)	Consider Material Additionally
Shear Wall (Combined)	Load Combination Type
Footing (Strip)	by Design Force of Gen / ADS
Footing (Combined)	by Design Force of Gen / ADS
Batch Beam	by All Load Combination
Batch Column	by Max / Min Forces (Selected)
	Remove Duplicate Load Comb.
	Design Force Type
	Neglect Ductile Design & Magnified Moment
	Neglect Ductile Design & Magnified Moment
	Consider Ductile Design & Magnified Moment

"Memb.(Down Link) " > Load Combination Type

[Column & Column(General)& Shear Wall & Footing]

- By Design force of Gen / ADS : Import the design forces used in Gen's design.
- By All Load Combination : Results for all load combinations are imported individually.
- By Max/Min Forces (All) : Import only the Max. and Min. values among member forces from all load combinations.
- By Max/Min Forces (Selected) : Import only the design forces for the selected design components.

[All Batch Design]

- By Design force of Gen / ADS : Import the design forces used in Gen's design.

"Memb.(Down Link) " > Design Force Type

[Column & Column(General) & Shear Wall & Shear Wall (Combined) & Batch Column & Batch Wall]

- Neglect Ductile Design & Magnified Moment
- : Design forces by strong column-weak beam are not considered
- : Design forces by 2nd Order Effect (by moment magnification method) are not considered.
- Consider Ductile Design & Magnified Moment
- : Design forces by strong column-weak beam are considered
- : Design forces by 2nd Order Effect (by moment magnification method) are considered.
- * Moment magnification method is not reflected : "2nd Order Effect" option is checked off when importing from Gen.

[Footing & Footing(Combined)]

- Design force of Column : Use the Design forces of column.
- Reaction of Support : Use the forces of reaction result.

Add Eurocode 2 in Batch Design 新增歐規批次設計

There are many inconveniences when performing design in Gen. For example, when a section needs to be added when grouping members or when the cross section needs to be increased according to design results, analysis and design should be performed again. Since these cases must be performed repeatedly, a lot of time and effort are required depending on the magnitude of the building.
Batch Design is a design feature to provide convenience for these repetitive parts in Gen, and the procedure is as follows.

• The purpose of Batch Design is to quickly create and link the material, cross-section, and rebar information to Gen for analysis and design in Gen. Please use this product with the understanding that design results may differ slightly due to internal differences in design settings for Gen and Design+.

• Design as per EN or IS code is not supported.

Batch Design Guide : [Download]

Improved Batch Wall Design 改善批次牆設計功能

Improved Design Module according to IS Code (India)

改善印度規範設計模組相關功能

The items below have been updated. If you want to know more details, please click on [Here]

- Added Design Module for IS :456-2000.
 - 1. Column Module
 - 2. Basement Wall Module
 - 3. Shear Wall Module

Improvement of Anchor Bolt Design in Base Plate 改善基座鈑的螺栓設計

•The anchor design of the base plate was modified to be designed according to the design process of "RC>Anchor Bolt Design".

Design+ 2024 (V2.1)

MIDAS

Improvement of Start Page 改善起始頁顯示

• Supports recent project list

Design+ 2024 (V1.1)

Start Page	1	MIDAS Account
	If you are a licensed user	If you are new to MIDAS solution
NEWS	Global Technical Support Center	Bridge Geotechnical Building Mechanical Cad
Gen 2021 (Civil 2022 nGen 2022	v3.1) installation available. (Sep.02,2021)	

Design+ 2024 (V2.1)

Start Page Member Member List Drawing Quantity

Contactus | A MIDAS Account

Welcome to MIDAS

Recent

New Project		+	test_column design CNUsers\vises\Downloads\test_column designmdpb	3024-03-2012:55:28	ł
EC_batch design_01 CVUsers'lylseo'.Downloads'.EC_batch design_0:1.mdpb	2024-03-12 14:21:15	:	test_story data CNUsers/ylses/Downloads/test_story/data.mdpb	2024-02-1311:29:43	:
test_anchor Issue_Anchor CWaeraVyiseoDownloade/test_anchor issue_Anchor.mdpb	2024-01-31 16:08:49	:	111(1) CNUsers'lyine\Downloads\111(1)mdpb	2024-01-3111;50:21	:
test_240104 C\Users\vjoes\Downloads\test_240104.mdpb	2024-01-04 12:36:53	:	test_start CNUsersVyicesNownloadbNtest_start.middb	2023-12-11 16:08 23	ł
test_slab_IS code_01 CYUserSylserSDownloadSitest_slab_IS code_01Lindpb	2023-11-17 16:26:37	:	Batch design manual D106_release work02_design+'Batch design manual'i Batch desi	2023-12-0515:4422	;
<mark>test_slab_IS code</mark> CNUserNylseoNDownloadi/test_slab_IS code.mdpb	2023-11-09 16:50:59	:	test_column D106_release work100_Gen12023년도 개매일찍123_D+_batch de	2023-10-12 16:21:31	;
test_01_re04 DND6_release work100_Gen12023년도 개발방혹123_D+_batch de	2023-10-12 17:50:21	ł	test_03 D106_release work100_Geni2023년도 개발함팩123_D+_batch.de	2023-08-18 12:58:27	ł
test02 D106, release work/02, design+/2015, combined footing/test02	2023-10-11 14:44:19	:			

Thank you

Improvement of IS code in midas Gen

Added Seismic Provisions for Steel Design as per IS : 18168 -2023

- 1. Additional Seismic Load Combination as per IS: 18168: 2023
- 2. Column to beam strength ratio as per IS : 18168 2023
- 3. Seismic Beam Design for SMRF as per IS : 18168-2023
- 4. Seismic Beam Design & Brace Design for SCBF as per IS : 18168-2023

• Irregularity Check according to IS : 1893 -2016

- 1. Torsional Irregularity & Weight Irregularity
- 2. Stiffness Irregularity
- *3. Capacity Irregularity*
- 4. Irregular modes of oscillation

Irregularity Check according to IS : 16700 -2023 Stiffness Irregularity & Conscitution Irregularity

Stiffness Irregularity & Capacity Irregularity
 Natural modes of vibration

- Added Column Module for IS :456-2000.
- Added Basement Wall Module for IS :456-2000.
- Added Shear Wall Module for IS :456-2000

IS 1893 (Part 1).

Added Seismic Provisions for Steel Design as per IS : 18168 - 2023

1. Additional Seismic Load Combination as per IS : 18168 : 2023

neral Load	Ste Comb	el Design	Concrete D	esign SRC (Design Cold Formed Steel Design Footir	ng Design Al	luminun Load C	n Design	Option Add Repla	ice		
	No	Name	Active	Туре	Description	^			Code Selection		0	
	25	sLCB2	Streng	Add	0.9D - 1.5(1.0)RS X			Self weight(\$	Steel Co	oncrete	SRC	
	26	sLCB2	Streng	Add	0.9D - 1.5(1.0)RS Y	1		Floor load(S	Cold Formed Steel		Footing	
•	27	sLCB2	Streng	Add	ASC:1.2D+3EL2			EQ XP(ST)	Aluminum			_
	28	sLCB2	Streng	Add	ASC:0.9D+3EL2		*		Design Code :	IS:800-2007	7	\sim
	29	sLCB2	Streng	Add	ASC:1.2D-3EL2							
	30	sLCB3	Streng	Add	ASC:0.9D-3EL2				Scale Up of Respon	se Spectrum	Load Cases	
	31	sLCB3	Streng	Add	ASC:1.2D+2.5RS1				Scale Up Factor :	1	RS X	\sim
	32	sLCB3	Streng	Add	ASC:1.2D+2.5RS1				Factor Load Case	,	Add	
	33	sLCB3	Streng	Add	ASC:0.9D+2.5RS1						Add	
	34	sLCB3	Streng	Add	ASC:0.9D+2.5RS1						Modify	
	35	sLCB3	Streng	Add	ASC:1.2D-2.5RS1						Delete	
	36	sLCB3	Streng	Add	ASC:1.2D-2.5RS1				Manipulation of Constru	ction Stage	Load Case	
	37	sLCB3	Streng	Add	ASC:0.9D-2.5RS1				ST + Static Load Case	iccion Stuge	Lood Case	
	38	sLCB3	Streng	Add	ASC:0.9D-2.5RS1				CS : Construction Sta	ne Load Cas		
	39	sLCB3	Streng	Add	1.2D + 0.5(L) + 2.5EQ XP				ST Only	CS Only		
	40	sLCB4	Streng	Add	1.2D + 0.5(L) + 2.5EQ YP) co only	0.51143	
	41	sLCB4	Streng	Add	1.2D + 0.5(L) - 2.5EQ XP				Consider Orthogon	al Effect		
	42	sLCB4	Streng	Add	1.2D + 0.5(L) - 2.5EQ YP				Set Load Ca	ses for Orth	ogonal Effect	
	43	sLCB4	Streng	Add	1.2D + 0.5(L) + 2.5RS X				100 : 30 Rule			
	44	sLCB4	Streng	Add	1.2D + 0.5(L) + 2.5RS Y				SRSS(Square-Roo	t-of-Sum-of	-Squares)	
	45	sLCB4	Streng	Add	1.2D + 0.5(L) - 2.5RS X				Concerning Additional Law	d Combinet		_
	46	sl CB4	Streng	Add	1 2D + 0 5(L) - 2 5RS Y	~			for Special Seismi	c Load	IONS	
_	_								for Vertical Seism	is Forces		
(onv		Import		Auto Generation	d Sheet Form	m		for vertical Seism	e Porces		_ _

1.Additional Seismic load Combination According to Clause 5.5 of IS : 18168 -2023 For Seismic analysis of steel buildings, in addition to the load combination as per IS : 1893 : 2016 & those in T able 4 of IS : 800 : 2007, load combination mentioned below, must be also considered. $1.2 DL + \gamma_{LL}LL \pm 1.0 EL_m$(1) 1) 1.2 $DL + \gamma_{LL}LL \pm 1.0 EL_m$ $0.9 DL \pm 1.0 EL_m$(2) where 2) $0.9DL \pm 1.0 EL_m$ DL= Dead load as per IS 875 (Part 1); = Partial safety factor for live load YLL Factors for Seismic Design X 0.25 for live load class less than Special Seismic Loads or equal to 3.0 kN/m² Over-Strength & Safety Factor 0.50 for live load class more than Load Case EQ XP(ST) V ... 3.0 kN/m²; Factor 3 LL= Imposed load as per IS 875 (Part 2); Add Load Case Factor EQ XP(ST) 3 Modify = Estimated maximum equivalent EQ YP(ST) ELm 3 RS X(RS) 2.5 earthquake force induced in the Delete structure = ΩEL ; = Overstrength factor = 2.5 for Ω Vertical Seismic Forces SCBFs and EBFs = 3.0 for Vertical Force Factor : 0.2 SMRFs: and OK Cancel EL = Earthquake loadas per

Dialog box for assigning concerned Overstrength factor (2.5,3.0) and Partial safety factor (0.25, 0.3) has been added.

Added Seismic Provisions for Steel Design as per IS : 18168 - 2023

2. Column to beam strength ratio as per IS : 18168 - 2023

ľ	Design Code		۷ /	🔯 Start F	Page 🛛 🞑 🛛	MIDAS/Gen	🔯 Steel Strong	g Column-Weak Be	am Ratio	×
ľ	Strength Reduction Factors			Node	Column	LCB	Column Strength	Beam Strength	Ratio	Remark
1	Modify Steel Material			Accentance	Limit for SC1		ural Canacity Patio	(КИТП)		
r	Serviceability Parameters			Input Accept	tance Limit V	alue and Pres	ss 'Apply' button to	change value.	1.00	Apply
			•	2	Local y	LCB	225.6269	343.0218	0.66	N/A
r	Bending Coefficient(Cb)			2	Local z	LCB	690.2307	411.6261	1.68	OK
Ľ	Shear Coefficient (Cv)			4	Local y	LCB	121.7592	214.2330	0.57	N/A
TĽ.	Specify Allowable Stresses			4	Local z	LCB	785.0620	115.3562	6.81	OK
	Colorado Destativo Conterro las Marchae			6	Local y	LCB	121.7448	96.1302	1.27	OK
25/	Seismic Load Resisting System by Member			6	Local z	LCB	784.9653	550.2155	1.43	OK
	Longitudinal Stiffener of Box Section			8	Local y	LCB	121.7872	107.1165	1.14	OK
0	Combined Ratio Calculation Method for Circ	cular Section		8	Local z	LCB	785.2362	275.1077	2.85	OK
~				9	Local y	LCB	34.4310	540.5467	0.06	N/A
	Steel Design Tables	•		9	Local z	LCB	176.0889	540.5467	0.33	N/A
T,	Steel Code Check	Ctrl+6		10	Local y	LCB	37.5810	214.2330	0.18	N/A
52	Steel Ontimal Design	Ctrl+Shift+6		10	Local z	LCB	192.1989	2/5.10/7	0.70	N/A
9	Steel Optimal Design	Curt Sinit to	1	11	Localy	CB	37.5785	107.1165	0.35	N/A
	Steel Strong Column-Weak Beam	•	Strong Col	umn-Weak Bea	am Ratio Table	CB	192.1800	107 1165	0.35	N/A
				12	Local y	LCB	37.5929	275 1077	0.35	N/A
				14	Localy	LCB	192.2393	2/6.9016	0.70	N/A
				14	Local 7	LCB	794 9300	550 2155	1.43	OK
				16	Localy	LCB	121 7821	107 1165	1.43	OK
				16	Local z	LCB	785 2028	275 1077	2.85	OK
				17	Local y	LCB	37,5791	107,1165	0.35	N/A
				17	Local z	LCB	192,1893	550.2155	0.35	N/A
				18	Local y	LCB	37.5914	107.1165	0.35	N/A
				18	Local z	LCB	192.2523	275.1077	0.70	N/A
				20	Local y	LCB	121.7742	214.2330	0.57	N/A
				20	Local z	LCB	785.1559	296.2699	2.65	OK
				22	Local y	LCB	121.8186	107.1165	1.14	OK
				22	Local z	LCB	785.4405	275.1077	2.86	OK
				23	Local y	LCB	37.5871	214.2330	0.18	N/A
				23	Local z	LCB	192.2302	275.1077	0.70	N/A
				24	Local y	LCB	37.6015	107.1165	0.35	N/A
				24	Local z	LCB	192.3037	275.1077	0.70	N/A
				26	Local y	LCB	121.8214	107.1165	1.14	OK
				26	Local z	LCB	785.4589	275.1077	2.86	OK
				27	Localy	LCB	37.6022	107.1165	0.35	N/A
				27	Local z	LCB	192.3074	275.1077	0.70	N/A
			4	Column	Local Axis	(<		

1.Column to beam strength ratio

According to Clause 8.2 of IS : 18168 -2023

For Seismic analysis of steel buildings At a Beam-Column joint, the following strength ratio shall be satisfied :

$$\frac{\sum M_{pc}}{\sum M_{bo}} = \frac{\sum Z_{pc} f_{yc} (1 - \frac{P_u}{P_d})}{\sum 1.1 R_y Z_{pb} f_{yb}} > 1.4$$

For clause 8.2.1 following option is added in th e design code dialog box under Seismic provisi ons

8.2 Column to Beam Strength Ratio

At a beam-column joint, the following strength ratio shall be satisfied:

$$\frac{\sum M_{\rm pc}}{\sum M_{\rm bo}} = \frac{\sum Z_{\rm pc} f_{\rm yc} \left(1 - \frac{P_{\rm u}}{P_{\rm d}}\right)}{\sum 1.1 R_{\rm y} Z_{\rm pb} f_{\rm yb}} > 1.4$$

where Z_{pc} and Z_{pb} are the plastic section modulus and f_{yc} and f_{yb} are the characteristic yield strength of column and beam cross-sections respectively, P_u is the maximum factored axial compressive load and P_d is the design strength under axial compression, and R_y is the material uncertainty factor corresponding to the grade of steel in beams.

Added Seismic Provisions for Steel Design as per IS : 18168 - 2023

3. Seismic Beam Design for SMRF as per IS : 18168-2023

Added Seismic Provisions for Steel Design as per IS : 18168 - 2023

4. Seismic Beam Design & Brace Design for SCBF as per IS : 18168-2023

Limiting (b/t) and (d/t) ratio check

).Check flange width to thickness ratio for seimsic provision
 [IS:18168-2023 6.1, Table 2]
 -. e = SQRT(250/fy) = 0.91
 -. b/t = BTR = 5.65
 -. BTR < 11.3*e/SQRT(Ry) --> 0.K.

).Check web depth to thickness ratio for seimsic provision
[IS:18168-2023 6.1, Table 2]
-. e = SQRT(250/fy) = 0.91
-. d/t = HTR = 32.96
-. HTR < 44.4*e/SQRT(Ry)--> 0.K.

Slenderness ratio check

(). Check slenderness ratio for Seismic Provision
 [IS:18168:2003 6.2]
 -. 1/r = 149.4< 160 -->0.K.

1. Seismic provisions for Beam design under SCBF are added

As per Clause 12.2.4.4 and Section 6 of IS : 18168-2023 following checks are added under special s seismic provision.

a) Limiting Flange width to thickness ratio , web depth to thickness r atio checks as per Table 2 of IS :18168-2023.

b) Slenderness check as per Clause 6.2 of IS :18168-2023.

c) Shear Capacity check as per clause 6.4.1 and clause 8.4 of IS :1816 8-2023

2. Seismic provisions for Brace design under SCBF are added

As per Clause 12.2.4.2 and Section 10 of IS : 18168-2023 following checks are added under speci als seismic provision.

- _a) Limiting Flange width to thickness ratio, web depth to thickness ratio checks as per Table 2 of IS :18168-2023.
- b) Slenderness check as per Clause 10.2 of IS :18168-2023.

1. Torsional Irregularity & Weight Irregularity

Torsional Irregularity Chec

• Results > Results Tables > Story> Irregularity check parameter > IS : 1893-2016 > Torsional Irregularity / Weight Irregularity check

Lood		Lovel	Story	Average Value	of Extreme Points	Maxir	num Value		
Case	Story	(m)	(m) Height 1.4*Story D (m) (m) (m)		1.2*Story Drift (m)	Node	Story Drift (m)	Remark	
EXP	12F	40.50	3.15	0.0016	0.0014	353	0.0012	Regular	
EXP	11F	37.35	3.15	0.0026	0.0022	321	0.0018	Regular	
EXP	10F	34.20	3.15	0.0035	0.0030	289	0.0025	Regular	
EXP	9F	31.05	3.15	0.0043	0.0037	257	0.0031	Regular	
EXP	8F	27.90	3.15	0.0050	0.0043	225	0.0036	Regular	
EXP	7F	24.75	3.15	0.0055	0.0047	193	0.0040	Regular	
EXP	6F	21.60	3.15	0.0059	0.0051	161	0.0042	Regular	
EXP	5F	18.45	3.15	0.0062	0.0053	129	0.0044	Regular	
EXP	4F	15.30	3.15	0.0063	0.0054	97	0.0045	Regular	
EXP	3F	12.15	3.15	0.0063	0.0054	65	0.0045	Regular	
EXP	2F	9.00	3.15	0.0059	0.0050	1	0.0042	Regular	
EXP	1F	5.00	4.00	0.0047	0.0040	33	0.0033	Regular	

Weight Irregularity Ch

< ∕	Start Page	MIDAS/0	Gen 📴 Result	-[Weight Irregula	rity Check] ×						
	Load Case	Story	Level (m)	Story Height (m)	Story Weight (kN)	1.5*Lower Story Weight (kN)	Story Weight Ratio	Remark			
•	DL	Roof	43.65	0.00	11818.865	20758.417	0.000	Regular			
	DL	12F	40.50	3.15	13838.944	20758.417	0.667	Regular			
	DL	11F	37.35	3.15	13838.944	20758.417	0.667	Regular			
	DL	10F	34.20	3.15	13838.944	20758.417	0.667	Regular			
	DL	9F	31.05	3.15	13838.944	20758.417	0.667	Regular			
	DL	8F	27.90	3.15	13838.944	20758.417	0.667	Regular			
	DL	7F	24.75	3.15	13838.944	20758.417	0.667	Regular			
	DL	6F	21.60	3.15	13838.944	20758.417	0.667	Regular			
	DL	5F	18.45	3.15	13838.944	20758.417	0.667	Regular			
	DL	4F	15.30	3.15	13838.944	20758.417	0.667	Regular			
	DL	3F	12.15	3.15	13838.944	21059.693	0.657	Regular			
	DL	2F	9.00	3.15	14039.795	0.000	0.000	Regular			
	DL	1F	5.00	4.00	945.180	0.000	0.000	Regular			
< > \	Weight Irreg	ularity(X) (We	ight Irregularity()	0/		<					
				-							

1.Torsional Irregularity Check

According to Table 5-i) of Clause 7.1 of IS : 1893 Part-1 -2016,

"Story Drift of Maximum Value" divided by "Story Drift of Average Value of Extreme Points." If it exceeds 1 .2 but less than 1.4, "Irregular-Building Config" is printed, If it exceeds 1.4 "Irregular-Structure Config" is printed. If it is less than 1.2, 'Regular' is printed.

2. Weight Irregularity Check

According to Table 6-ii) of Clause 7.1 of IS : 1893 Part-1 -2016

" Story Weight Ratio", Story Weight divided by 1.5*Story Weight of adjacent lower story, If it exceeds 1.0, "Irregular" is printed. If it is less than 1.0, 'Regular' is printed.

2. Stiffness Irregularity

• Results > Results Tables > Story> Irregularity check parameter > IS : 1893-2016 > Stiffness Irregularity check

Stiffness Irregularity Chec

۱ / ۲	Start Page	MIDAS/Gen	🕼 Result-[Stir	ffness Irregularity (Check] ×					
	Load Case	Story	Level (m)	Story Height (m)	Story Drift (m)	Story Shear Force (kN)	Story Stiffness (kN/m)	Upper Story Stiffness (kN/m)	Story Stiffness Ratio	Remark
	EXP	12F	40.50	3.15	0.0012	588.84	506898.41	0.00	0.000	Irregular
	EXP	11F	37.35	3.15	0.0018	1170.52	637927.53	506898.41	1.258	Regular
	EXP	10F	34.20	3.15	0.0025	1653.55	657991.75	637927.53	1.031	Regular
	EXP	9F	31.05	3.15	0.0031	2047.09	660336.13	657991.75	1.004	Regular
	EXP	8F	27.90	3.15	0.0036	2360.30	659726.78	660336.13	0.999	Irregular
	EXP	7F	24.75	3.15	0.0039	2602.35	658901.20	659726.78	0.999	Irregular
	EXP	6F	21.60	3.15	0.0042	2782.38	658529.77	658901.20	0.999	Irregular
	EXP	5F	18.45	3.15	0.0044	2909.57	659301.21	658529.77	1.001	Regular
	EXP	4F	15.30	3.15	0.0045	2993.07	663288.06	659301.21	1.006	Regular
	EXP	3F	12.15	3.15	0.0045	3042.03	677823.81	663288.06	1.022	Regular
	EXP	2F	9.00	3.15	0.0042	3065.63	731110.47	677823.81	1.079	Regular
•	EXP	1F	5.00	4.00	0.0033	3073.12	922094.54	731110.47	1.261	Regular
< F \	Stiffness Irreg	ularity(X) (Stiff	ness Irregularity()	0/		<				>

3. Stiffness Irregularity(Soft Story) Check According to Table 6-i) of Clause 7.1 of IS : 1893 Part-1 -2016

When the story stiffness of a particular story is greater than the stiffness of the story below, then the story will be defined as irregular. i.e. if the ratio of Story stiffness divided by the upper story stif fness, IF exceeds 1 " Regular" is printed, If less than 1 "Irregular" is printed in remarks

- 3. Capacity Irregularity
- Results > Results Tables > Story> Irregularity check parameter > IS : 1893-2016 > Capacity Irregularity check

Capacity Irregularity Ch

1	C s	tart Page	MIDAS/Gen	Result-	Capacity Irregularit	ty Check] ×								
~	Story	Level (m)	Story Height (m)	Angle1 ([deg])	Story Shear Strength1 (kN)	Upper Story Shear Strength1 (kN)	Story Shear Strength Ratio1	Remark1	Angle2 ([deg])	Story Shear Strength2 (kN)	Upper Story Shear Strength2 (kN)	Story Shear Strength Ratio2	Remark2	
A	ngle :	= 0 [Deg]								C 31 C 3				
lr b	utton	ngle and pr	ress the 'Apply' the angle.	0.00	Apply				_					
1	2F	40.50	3.15	0.00	11349.3080	0.0000	0.0000	Regular	90.00	15303.2605	0.0000	0.0000	Regular	
1	1F	37.35	3.15	0.00	11349.3080	11349.3080	1.0000	Regular	90.00	15303.2605	15303.2605	1.0000	Regular	
1	0F	34.20	3.15	0.00	11349.3080	11349.3080	1.0000	Regular	90.00	15303.2605	15303.2605	1.0000	Regular	
9	F	31.05	3.15	0.00	11349.3080	11349.3080	1.0000	Regular	90.00	15303.2605	15303.2605	1.0000	Regular	
8	F	27.90	3.15	0.00	11349.3080	11349.3080	1.0000	Regular	90.00	15303.2605	15303.2605	1.0000	Regular	
7	F	24.75	3.15	0.00	11349.3080	11349.3080	1.0000	Regular	90.00	15303.2605	15303.2605	1.0000	Regular	
6	F	21.60	3.15	0.00	11349.3080	11349.3080	1.0000	Regular	90.00	15303.2605	15303.2605	1.0000	Regular	
5	F	18.45	3.15	0.00	11349.3080	11349.3080	1.0000	Regular	90.00	15303.2605	15303.2605	1.0000	Regular	
4	F	15.30	3.15	0.00	11349.3080	11349.3080	1.0000	Regular	90.00	15303.2605	15303.2605	1.0000	Regular	
3	F	12.15	3.15	0.00	11349.3080	11349.3080	1.0000	Regular	90.00	15303.2605	15303.2605	1.0000	Regular	
2	F	9.00	3.15	0.00	11349.3080	11349.3080	1.0000	Regular	90.00	15303.2605	15303.2605	1.0000	Regular	
1	F	5.00	4.00	0.00	11349.3080	11349.3080	1.0000	Regular	90.00	15303.2605	15303.2605	1.0000	Regular	
				0.00				regular			1 10000.2000		ricguia	
•	Cap	acity Irreg	ularity /				<							

4. Capacity Irregularity (Weak Story) check

According to Table 6-v) of Clause 7.1 of IS : 1893 Part-1 -2016

If the ratio of the lateral strength of a story to lateral strength of the story above exceeds 1.0, "Re gular" is printed. If it is less than 1.0, 'Irregular' is printed.

4. Irregular modes of oscillation

Results > Results Tables > Story> Irregularity check parameter > IS : 1893-2016 > Mode shapes irregularity check

Irregular modes of oscillation c

Reaction																
Displacements																
Truss	•	۷ /	🚺 Star	rt Page		/Gen 🤇 🚺	Result-firm	egular Mode	Check] ×							
Cable	•			<u> </u>				-		-					I .	
Beam	•		Node	Mode	ode UX			UY UZ		RX		R	Y		، ۷	
Plate	•						MODAL IRREGULARIT				CHECK					
Plane Stress			_	1	.First three	lateral trans	lational mode Contribution									
Plane Strain			-	Mada	Along X	Madel	Mada	Along Y	Madel							
Axisymmetric			-	No	Period	Mass	No	Period	Mass							
Solid				1	2.21231	81.8474	2	1.20097	69.4455							
Wall				4	0.712644	9.70896	6	0.275954	18.8484							
Flastic Link				5	0.401828	3.6644	-									
Conserved Line		▶	-		Sum =	95.2208		Sum =	88.2939							
General Link			_			>65			>65							
Vibration Mode Shape			_			Remark	OK									
Mode Shapes Irregularity Check			-		0.01											
Buckling Mode Shape			_	-	2.Closene	ss of funda	mental per	lod Ix and	у							
Nodal Results of RS			-	1 max	1 20007	1 ratio(1mi	Remark									
Story			-	2.2123	1.20097	0.003177	UK									
nelastic Hinge						Status		REGULAR								
Time History Analysis																
Heat of Hydration Analysis			-													
Tendon		4 >	Eigen	value Mo	de /						<		1		1	1
Companies Contines France C																

- Displacement Participation Factor
- Initial Element Force

Imperfection

4. Irregular modes of oscillation check

According to Table 6-vii) of Clause 7.1 of IS : 1893 Part-1 -2016

A building is said to be irregular if it satisfies both condition mentioned below :-1)the first three modes contribute less than 65 percent mass participation factor in each principal plan direction.

2) the fundamental lateral natural periods of the building in the two principal plan directions are c loser to each other by 10 percent of the larger value.

Hence for the 1st condition If summation of modal mass participation is less then 65 percent "Irreg ular" is printed, if greater than 65 percent "Regular" is printed.

For 2^{nd} condition if the ratio T_{min} to 0.9 $*T_{max}$ exceeds 1 "Irregular" is printed, If less than 1 "Regula r" is printed.

Here T_{min} = minimum (T_x and T_y) and T_{max} = maximum (T_x and T_y), T_x and T_y are fundamental nat ural period of the building in respective principal plan direction.

For final status, if both condition are "Irregular", "Irregular" is printed, if both condition are "Reg ular", "Regular" is printed, if one of the condition is "Regular" and other one is "Irregular", "Part ial Regular" is printed.

1. Stiffness Irregularity & Capacity Irregularity

Stiffness Irregularity Chec

• Results > Results Tables > Story> Irregularity check parameter > IS : 16700-2023 > Stiffness Irregularity check / Capacity Irregularity check

Load Case	Story	Level (m)	Story Height (m)	Story Drift (m)	Story Shear Force (kN)	Story Stiffness (kN/m)	Upper Story Stiffness (kN/m)	Story Stiffness Ratio	Rema
EX	13F	34.10	2.37	-0.0001	237.93	3051251.0	0.00	0.000	Irregular
EX	12F	32.80	1.30	0.0003	299.56	1076140.7	-3051251.07	0.353	Irregular
EX	11F	30.00	2.80	0.0007	527.39	724971.58	1076140.74	0.674	Irregular
EX	10F	27.20	2.80	0.0007	858.20	1161068.0	724971.58	1.602	Regular
EX	9F	24.40	2.80	0.0007	1158.13	1553532.5	1161068.07	1.338	Regular
EX	8F	21.60	2.80	0.0007	1428.56	1915197.4	1553532.51	1.233	Regular
EX	7F	18.80	2.80	0.0007	1668.01	2255651.5	1915197.43	1.178	Regular
EX	6F	16.00	2.80	0.0007	1886.17	2597632.5	2255651.59	1.152	Regular
EX	5F	13.20	2.80	0.0007	2076.23	2944598.8	2597632.50	1.134	Regular
EX	4F	10.40	2.80	0.0007	2233.21	3307545.7	2944598.80	1.123	Regular
EX	3F	7.60	2.80	0.0006	2356.89	3708006.5	3307545.70	1.121	Regular
EX	2F	4.50	3.10	0.0047	2450.48	518907.56	3708006.57	0.140	Irregula
EX	1F	0.00	4.50	0.0133	2496.55	188326.13	518907.56	0.363	Irregula
EX	B1	-3.50	3.50	0.0078	2496.55	322089.17	188326.13	1.710	Regular
EX	B2	-4.50	1.00	0.0006	2496.55	3918566.2	322089.17	12.166	Regular

Capacity Irregularity Check

	Story	Level (m)	Story Height (m)	Angle1 ([deg])	Story Shear Strength1 (kN)	Upper Story Shear Strength1 (kN)	Story Shear Strength Ratio1	Remark1	Angle2 ([deg])	Story Shear Strength2 (kN)	Upper Story Shear Strength2 (kN)	Story Shear Strength Ratio2	Remark:
1	Angle =	0 [Deg]				- inch		-	<u> </u>				
	Input and change t	le and press l	the 'Apply' button to	0.00	Apply								
	13F	34.10	2.37	0.00	1225.7204	0.0000	0.0000	Regular	90.00	5494.3922	0.0000	0.0000	Regular
	12F	32.80	1.30	0.00	3252.2616	1225.7204	2.6533	Regular	90.00	0.0000	5494.3922	0.0000	Irregular
	11F	30.00	2.80	0.00	24385.1941	3252.2616	7.4979	Regular	90.00	0.0000	0.0000	0.0000	Irregula
	10F	27.20	2.80	0.00	24385.1941	24385.1941	1.0000	Regular	90.00	0.0000	0.0000	0.0000	Irregula
9	F	24.40	2.80	0.00	24385.1941	24385.1941	1.0000	Regular	90.00	0.0000	0.0000	0.0000	Irregula
8	F	21.60	2.80	0.00	24401.1017	24385.1941	1.0007	Regular	90.00	0.0000	0.0000	0.0000	Irregula
1	7F	18.80	2.80	0.00	24401.1017	24401.1017	1.0000	Regular	90.00	0.0000	0.0000	0.0000	Irregula
	BF	16.00	2.80	0.00	26422.2531	24401.1017	1.0828	Regular	90.00	2021.1514	0.0000	0.0000	Irregula
1	SF	13.20	2.80	0.00	26526.9082	26422.2531	1.0040	Regular	90.00	2125.8065	2021.1514	1.0518	Regula
4	1F	10.40	2.80	0.00	26526.9082	26526.9082	1.0000	Regular	90.00	2125.8065	2125.8065	1.0000	Regula
	3F	7.60	2.80	0.00	26526.9082	26526.9082	1.0000	Regular	90.00	2125.8065	2125.8065	1.0000	Regula
	2F	4.50	3.10	0.00	9275.0574	26526.9082	0.3496	Irregular	90.00	9275.0574	2125.8065	4.3631	Regula
	1F	0.00	4.50	0.00	10629.0326	9275.0574	1.1460	Regular	90.00	10629.0326	9275.0574	1.1460	Regula
	B1	-3.50	3.50	0.00	11265.6844	10629.0326	1.0599	Regular	90.00	11265.6844	10629.0326	1.0599	Regula
	B2	-4.50	1.00	0.00	11265.6844	11265.6844	1.0000	Regular	90.00	11265.6844	11265.6844	1.0000	Regula

1.Stiffness Irregularity Check

According to Clause 5.3 a) of IS : 16700-2023,

Lateral stiffness of any story shall not be less than 70 percent of that of the story above. Hence the story sti ffness ratio If it exceeds 0.7 "Irregular" is printed. If it is less than 0.7, 'Regular' is printed.

2.Capacity Irregularity Check

According to Clause 5.3 b) of IS : 1893 Part-1 -2016,

Lateral strength of any story shall not be less than 90 percent of that of the story above. Hence the story st rength ratio If it exceeds 0.9 "Irregular" is printed. If it is less than 0.7, 'Regular' is printed.

Irregularity Check according to IS: 16700-2023

- 2. Natural modes of vibration
 - Results > Results Tables > Story> Irregularity check parameter > IS : 16700-2023 > mode shape irregularity check

-	Reaction															
1	Displacements			. / 🐔 .		1										
	Truss			: 🕰 / ۹	Start Page		MIDAS/Gen	Result-[Irregul	ar Mode Chec	k] ×				1		
	Cable			No	de Mo	ode	UX	1	JY	u	Z	F	RX	F	RY	RZ
	Beam															
	Plate								MOL	DAL IRRE	GULARIT	Y CHECI	<		_	
	Plane Stress					1.Fundamental Translati Along X			tion Natural period check							
	Plane Strain								Along Y							
	Axisymmetric		[Mo	ode		Mode	_							
	Solid	•	1		N	lo	Period	No	Pe	riod						
	Wall	•			8	8	1,31481	7	1.7	1358						
1	Elastic Link					-	<=8			-8						
1	General Link					-	Bomark	OK		-0						
1	Vibration Mode Shape					-	Remark	UN								
	Mode Shapes Irregularity Check															
+	Buckling Mode Shape				2.1	orsi	onal-Translation	al Fundam	ental natu	al period						
	Nodal Results of RS															
	Story				Mo	ode	Torsional Pe	riod(sec)	Minimun	n Translati	ional peri	Ratio(1	Ttor/0.9Tr	ans,min)	Remark	
	Inelastic Hinge	•	[9	9	1.202	21		1.3148			1.0159		NG	
	Time History Analysis		ĺ													
	Heat of Hydration Analysis															
	Tendon		ļ	∢) ∖Eig	envalue	Mode	1					<				
	Composite Section For C.S.															

Mode shape Irregularity Ch

Displacement Participation Factor

Initial Element Force

3. Mode shape irregularity Check According to Clause 5.5.1 of IS : 16700-2023

The natural period of fundamental torsional mode of vibration (T_{tor}) shall not exceed 0.9 times the smaller of the natural periods of the fundamental translational modes of vibra tion ($T_{trans,min}$) in each of the orthogonal directions in plan. Hence if the ratio of T_{tor} to 0. $9*T_{trans,min}$ exceeds 1 "Irregular" is printed, If less than 1 "Regular" is printed.

According to Clause 5.5.2 of IS : 1893 Part-1 -2016

The fundamental translational natural Period (T_x and T_y) in any of the two horizontal plan directions, shall not exceed 8s. hence here IF T_x , $T_y < 8 \text{ sec}$, "Regular" is printed, IF exceed s 8s "Irregular" is printed.

Approximate Time period of building according to IS : 16700-2023

1. Approximate Time period

Approximate Time peri

• From the Main Menu select Load > Static Load > Lateral > Seismic Loads > Add > Structural parameters > Period Calculator

C- Dire	ction Period		V. Diserting Derived							
 0.10 		-	Y- Direction Period							
01.1	$I = 0.075 \text{ n}^{(0.7)}$	5)	01.1	= 0.075 h^(0.7	5)					
2. 1	Γ = 0.080 h^(0.7	5)	()2. T	' = 0.080 h^(0.7	5)					
3. 1	Γ = 0.085 h^(0.7	5)	○з. т	r = 0.085 h^(0.7	5)					
4. 1	Γ = 0.075 h^(0.7	5) /sqrt(Aw)	() 4 . T	○4. T = 0.075 h^(0.75) /sqrt(Aw)						
05.1	Γ = 0.09 h / sqrt((d)	○ 5. T = 0.09 h / sqrt(d)							
06.1	Γ = 0.0644 h^(0.	9)	<u></u>	r = 0.0644 h^(0.	9)					
07.1	Γ = 0.0672 h^(0.	75)	○7. T	○ 7. T = 0.0672 h^(0.75)						
h:	36.47	(m)	h :	36.47	(m)					
Aw :	0	(m²)	Aw :	0	(m²)					
d :	17.25	(m)	d :	47.65	(m)					
ſ	Note: Formula	6 and 7 in both the	e direction are	e applicable only	if h>50					
- L										

1. Approximate Fundamental Natural period According to Clause 6.3.4 of IS : 16700-2023

The approximate fundamental natural period for buildings of height greater than 50 m is given b y following expressions :-

- $T_a = 0.0644 H^{0.9}$ for Concrete MRF systems
- $T_a = 0.0672 H^{0.75}$ for all ther conrete structural systems

Lateral Story Drift Check according to IS: 16700 - 2023

1. Lateral story drift check

Results > Results Tables > Story> check parameter > IS : 16700-2023 > Story drift

Stability Coefficient Check according to IS : 16700 - 2023

1. Stability Coefficient check

Results > Results Tables > Story> check parameter > IS : 16700-2023 > Stability Coefficient

1. Stability Coefficient check

According to Clause 7.3.10 of IS : 16700-2023

Stability coefficient is by : -

$$\theta = \frac{P_i \Delta_i}{V_i h_{i-r} R} \le 0.2$$

Where ,

 θ = Inter-Storey Drifit stability coefficient P_i = Total design vertical load at level i Δ_i = Design storey drift at level i V_i = Design shear force at level i; $h_{i,r}$ = Story height below level i

R=Response reduction factor

Improvement of IS code in Design+

- Added Design Module for IS :456-2000.
 - 1. Column Module
 - 2. Basement Wall Module
 - 3. Shear Wall Module

Added Design Module for IS :456-2000

Added Column module

Added Design Module for IS :456-2000

Added Basement wall module

Added Design Module for IS :456-2000

Added Shear wall module

WorkBar 🗸 🗸 🗸	Start Page Member Member List Drawing Quantity	▼ X	Report	▼
Add New Member	General		175% V Print Save Report Option Detail Report	✓ ✓ Include Input Data
System RC ~	Member Name W01 Double click to 200			
Type Shear Wall 🗸	Apply this Member to Dwg & Report ~		1. General Information	
Name			(1) Design Code : IS456:2000	
Add New Member	Section Force		(2) Code Unit : N. mm	
Reep Sect. & bar bata	Material (Basic)			
RC chart chal Atuminum Dainfranz	Concrete 25 V MPa	•	2. Material	
KC Steel SKC Aluminum Keinforce	Ver. Bar 415 VMPa	1000	(1) F _{ck} : 25.00MPa	
RC Design Procedure	Hor. Bar 415 V MPa	1000	(2) F. : 415MPa	
⊖ 🛱 Option	Fauturiant Destanale			
Design Code : IS456:2000	Stress-Strain Equivalent Rectangle	PM Curve	(3) F _{ys} : 415MPa	
Bi Live Load : IS875-1987	Material (Factor)	Unit: mm Double sciels by Two m	3. Section	
Rebar DB : IS	Light Weight Concrete Ver. Bar P	$0 \sim @ 450 \sim 2400$ (0.000, 2447) $\theta = 0.000^{\circ}$ N.A = 0.000^{\circ}	(1) Thickness : 200mm	
- Drawing Option	Factor 1 V Hor. Bar P	0 v @ 450 v 2200 Cmax = 2447kN		
Beport Option	Section End Bar	2 - P12 V 1800 Mb = 333kN.m	(2) Length : 1.000m	
Preference	Thickness 200.00 mm	@ 100 V 1600	(3) Cover : 40.00mm	
	Length 1.00 m BE. Har. P		(4) Height(X) : 3.500m	
- 🖸 Beam	Cover 40.00 mm	1000 eb = 452mm	(5) Height(Y) 3 500m	
- 🖽 Column	Height(x) 3.50 m Seismic Design	800		
- Column (General)	Height(y) 3.50 m Apply Specia	Provisions	(6) K _x . 1.000	
🖻 🎼 Shear Wall (1)	Kx 1.00 Special Str	200 M (kN,m)	(7) K _y : 1.000	
— III W01	Ky 1.00	-200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(8) Frame Type : Braced Frame	
		Jesign Parameters 400 € ₩ Ø		
	Apply Pilotis	uideline, MOLIT Select Axis to Draw : Major(X) Minor(Y)	· · · · · · · · · · · · · · · · · · ·	
- Stair	Design(F4) Check(F5) Descrit Apple(F2)	1		
Corbel / Bracket	Design(PF) Check(P3) Report Appry(P3)			•
- III Retaining Wall			8	
🖬 Beam Table				-
Slab Table				40
				1000
			T	
			4 5	
			4. Force	
	<		(1) Avial & Moment	>
	•			